Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-14T00:13:12.912Z Has data issue: false hasContentIssue false

Nutritional and nutraceutical aspects of KAMUT® khorasan wheat grown during the last two decades

Published online by Cambridge University Press:  14 February 2017

A. DI LORETO*
Affiliation:
Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 44, 40127, Bologna, Italy
R. DI SILVESTRO
Affiliation:
Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 44, 40127, Bologna, Italy Department of Food and Nutritional Sciences, University of Reading, Reading, RG66AP, UK
G. DINELLI
Affiliation:
Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 44, 40127, Bologna, Italy
V. BREGOLA
Affiliation:
Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 44, 40127, Bologna, Italy
V. STENICO
Affiliation:
Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 44, 40127, Bologna, Italy
R. E. SFERRAZZA
Affiliation:
Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 44, 40127, Bologna, Italy
I. MAROTTI
Affiliation:
Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 44, 40127, Bologna, Italy
R. QUINN
Affiliation:
Kamut International, Ltd. 333 Kamut Lane, Big Sandy, MT 59520, USA
S. BOSI
Affiliation:
Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 44, 40127, Bologna, Italy
*
*To whom all correspondence should be addressed. Email: alessandro.diloreto@unibo.it

Summary

Recently, organic farming systems have attracted the attention of consumers because of their low environmental impact. Organic agriculture is a valid alternative to conventional farming and ancient wheat, such as KAMUT® khorasan wheat (T. turgidum ssp. turanicum), has emerged as an industry leader for its nutritional and functional properties (anti-inflammatory, antioxidant and prebiotic).

The aim of the present study was to evaluate environmental effects on the quality of KAMUT® khorasan grains harvested in the last two decades (1989–2012) on one farm in Montana (USA), through the evaluation of phytochemical accumulation. Results revealed high variability in the amounts of macronutrients and nutraceuticals. In particular, from 1989 to 2012, there was a decreasing trend in starch content (ranging from 70·87 to 50·54/100 g) and amylose (from 41·48 to 31·46% of total starch) with a slight increase of insoluble dietary fibre (from 12·14 to 17·75/100 g). The soluble dietary fibre content varied among the years of cultivation even if the general trend remained constant (4·57–2·82/100 g). High variability of total polyphenols content was observed with the free soluble fraction present at lower levels than bound polyphenols (BP). Moreover, an inverse correlation between free and BP was observed. The results obtained in the present study show that the influence of environmental conditions plays a fundamental role in the accumulation of primary and secondary metabolites in wheat kernels and strongly modulate the nutritional and nutraceutical value of flour.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AACC (1983). In Approved Methods of Analysis. St. Paul, MN, USA: American Association of Cereal Chemists.Google Scholar
Altenbach, S. B., DuPont, F. M., Kothari, K. M., Chan, R., Johnson, E. L. & Lieu, D. (2003). Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. Journal of Cereal Science 37, 920.Google Scholar
Angioloni, A. & Collar, C. (2011). Nutritional and functional added value of oat, Kamut®, spelt, rye and buckwheat versus common wheat in breadmaking. Journal of the Science of Food and Agriculture 91, 12831292.CrossRefGoogle ScholarPubMed
Bellato, S., Ciccoritti, R., Del Frate, V., Sgrulletta, D. & Carbone, K. (2013). Influence of genotype and environment on the content of 5-n alkylresorcinols, total phenols and on the antiradical activity of whole durum wheat grains. Journal of Cereal Science 57, 162169.Google Scholar
BeMiller, J. N. & Whistler, R. L. (1996). Carbohydrates. In Food Chemistry, 3rd edn. (Ed. Fennema, O. R.), pp. 157204. New York: Marcel Dekker Inc.Google Scholar
Benedetti, S., Primiterra, M., Tagliamonte, M. C., Carnevali, A., Gianotti, A., Bordoni, A. & Canestrari, F. (2012). Counteraction of oxidative damage in the rat liver by an ancient grain (Kamut brand khorasan wheat). Nutrition 28, 436441.Google Scholar
Bilsborrow, P., Cooper, J., Tetard-Jones, C., Srednicka-Tober, D., Baranski, M., Eyre, M., Schmidt, C., Shotton, P., Volakakis, N., Cakmak, I., Ozturk, L., Leifert, C. & Wilcockson, S. (2013). The effect of organic and conventional management on the yield and quality of wheat grown in a long-term field trial. European Journal of Agronomy 51, 7180.CrossRefGoogle Scholar
Carnevali, A., Gianotti, A., Benedetti, S., Tagliamonte, M. C., Primiterra, M., Laghi, L., Danesi, F., Valli, V., Ndaghijimana, M., Capozzi, F., Canestrari, F. & Bordoni, A. (2014). Role of Kamut® brand khorasan wheat in the counteraction of non-celiac wheat sensitivity and oxidative damage. Food Research International 63, 218226.Google Scholar
Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, M., Taheri, A., Al-Yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H. & Nachit, M. (2010). Plant breeding and climate changes. Journal of Agricultural Science, Cambridge 148, 627637.Google Scholar
Ciccoritti, R., Carbone, K., Bellato, S., Pogna, N. & Sgrulletta, D. (2013). Content and relative composition of some phytochemicals in diploid, tetraploid and hexaploid Triticum species with potential nutraceutical properties. Journal of Cereal Science 57, 200206.CrossRefGoogle Scholar
De Vita, P., Di Paolo, E., Fecondo, G., Di Fonzo, N. & Pisante, M. (2007). No tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil & Tillage Research 92, 6978.Google Scholar
Di Silvestro, R., Marotti, I., Bosi, S., Bregola, V., Segura-Carretero, A., Sedej, I., Mandic, A., Sakac, M., Benedettelli, S. & Dinelli, G. (2012). Health-promoting phytochemicals of Italian common wheat varieties grown under low-input agricultural management. Journal of the Science of Food and Agriculture 92, 28002810.Google Scholar
Dinelli, G., Segura-Carretero, A., Di Silvestro, R., Marotti, I., Fu, S., Benedettelli, S., Ghiselli, L. & Gutiérrez, A. F. (2009). Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry. Journal of Chromatography A 1216, 72297240.Google Scholar
Dinelli, G., Segura-Carretero, A., Di Silvestro, R., Marotti, I., Arraez-Roman, D., Benedettelli, S., Ghiselli, L. & Fernandez-Gutierrez, A. (2011). Profiles of phenolic compounds in modern and old common wheat varieties determined by liquid chromatography coupled with time-of-flight mass spectrometry. Journal of Chromatography A 1218, 76707681.Google Scholar
Dinelli, G., Di Silvestro, R., Marotti, I., Bosi, S., Bregola, V., Di Loreto, A., Nipoti, P., Prodi, A. & Catizone, P. (2014). Agronomic traits and deoxynivalenol contamination of two tetraploid wheat species (Triticum turgidum spp. durum, Triticum turgidum, spp. turanicum) grown strictly under low input condition. Italian Journal of Agronomy 9, 127135.Google Scholar
Dixon, R. A. & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell 7, 10851097.Google Scholar
Dupont, F. M., Hurkman, W. J., Vensel, W. H., Chan, R., Lopez, R., Tanaka, C. K. & Altenbach, S. B. (2006). Differential accumulation of sulfur-rich and sulfur-poor wheat flour proteins is affected by temperature and mineral nutrition during grain development. Journal of Cereal Science 44, 101112.Google Scholar
Fares, C., Platani, C., Baiano, A. & Menga, V. (2010). Effect of processing and cooking on phenolic acid profile and antioxidant capacity of durum wheat pasta enriched with debranning fractions of wheat. Food Chemistry 119, 10231029.Google Scholar
Gebruers, K., Dornez, E., Boros, D., Fras, A., Dynkowska, W., Bedo, Z., Rakszegi, M., Delcour, J. A. & Courtin, C. M. (2008). Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry 56, 97409749.CrossRefGoogle ScholarPubMed
Gianotti, A., Danesi, F., Verardo, V., Serrazanetti, D. I., Valli, V., Russo, A., Riciputi, Y., Tossani, N., Carboni, M. F., Guerzoni, M. E. & Bordoni, A. (2011). Role of cereal type and processing in whole grain in vivo protection from oxidative stress. Frontiers of Bioscience 16, 16091618.Google Scholar
Grausgruber, H., Oberforster, M., Ghambashidze, G. & Ruckenbauer, P. (2005). Yield and agronomic traits of Khorasan wheat (Triticum turanicum Jakubz.). Field Crops Research 91, 319327.CrossRefGoogle Scholar
Graybosh, R. A., Peterson, C. J., Baenziger, P. S. & Shelton, D. R. (1995). Environmental modification of hard red winter wheat flour protein composition. Journal of Cereal Science 22, 4551.Google Scholar
Guzman, C., Caballero, L., Alvare, J. B. & Yamamori, M. (2011). Amylose content and starch properties in emmer and durum wheat lines with different waxy proteins composition. Journal of the Science of Food and Agriculture 91, 16251629.Google Scholar
Hansen, L. E., Jackson, D. S., Wehling, R. L., Wilson, J. D. & Graybosh, R. A. (2010). Functionality of native tetraploid wheat starches: effects of waxy loci alleles and amylase concentration in blends. Journal of Cereal Science 52, 3945.Google Scholar
Herencia, J. F., Ruiz, J. C., Melero, S., Garcia Galavis, P. A. & Maqueda, C. (2008). A short-term comparison of organic v. conventional agriculture in a silty loam soil using two organic amendments. Journal of Agricultural Science, Cambridge 146, 677687.CrossRefGoogle Scholar
Hucl, P. & Chibbar, R. N. (1996). Variation for starch concentration in spring wheat and its repeatability relative to protein concentration. Cereal Chemistry 73, 756758.Google Scholar
Kroon, P. A., Faulds, C. B., Ryden, P., Robertson, J. A. & Williamson, G. (1997). Release of covalently bound ferulic acid from fiber in the human colon. Journal of Agricultural and Food Chemistry 45, 661667.Google Scholar
Labuschagne, M. T., Elago, O. & Koen, E. (2009). The influence of temperature extremes on some quality and starch characteristics in bread, biscuit and durum wheat. Journal of Cereal Science 49, 184189.Google Scholar
Lammerts Van Bueren, E. T., Jones, S. S., Tamm, L., Murphy, K. M., Myers, J. R., Leifert, C. & Messmer, M. M. (2011). The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: a review. NJAS – Wageningen Journal of Life Sciences 58, 193205.Google Scholar
Liu, R. H. (2007). Whole grain phytochemicals and health. Journal of Cereal Science 46, 207219.Google Scholar
Marotti, I., Bregola, V., Aloisio, I., Di Gioia, D., Bosi, S., Di Silvestro, R., Quinn, R. & Dinelli, G. (2012). Prebiotic effect of soluble fibres from modern and old durum-type wheat varieties on Lactobacillus and Bifidobacterium strains. Journal of the Science of Food and Agriculture 92, 21332140.Google Scholar
McCleary, B. V. & Monaghan, D. A. (2002). Measurement of resistant starch. Journal of the Association of Official Analytical Chemists 85, 665675.Google Scholar
McLachlan, G. J. (2004). Discriminant Analysis and Statistical Pattern Recognition. Hoboken, NJ, USA: Wiley Interscience. John Wiley & Sons Inc.Google Scholar
Merendino, N., D'Aquino, M., Molinari, R., De Gara, L., D'Egidio, M. G., Paradiso, A., Cecchini, C., Corradini, C. & Tomassi, G. (2006). Chemical characterization and biological effects of immature durum wheat in rats. Journal of Cereal Science 43, 129136.Google Scholar
Mpofu, A., Sapirstein, H. D. & Beta, T. (2006). Genotype and environmental variation in phenolic content, phenolic acid composition and antioxidant activity of hard spring wheat. Journal of Agricultural and Food Chemistry 54, 12651270.CrossRefGoogle ScholarPubMed
Murphy, K. M., Campbell, K. G., Lyon, S. R. & Jones, S. S. (2007). Evidence of varietal adaptation to organic farming systems. Field Crops Research 102, 172177.Google Scholar
Prosky, L., Asp, N. G., Schweizer, T. F., DeVries, J. W. & Furda, I. (1988). Determination of insoluble, soluble, and total dietary fibre in foods and food products. Interlaboratory study. Journal of the Association of Official Analytical Chemists 71, 10171023.Google Scholar
Quinn, R. M. (1999). Kamut®: ancient grain, new cereal. In Perspectives on New Crops and New Uses (Ed. Janick, J.), pp. 182183. Alexandria, VA, USA: ASHS Press.Google Scholar
Rodriguez-Delgado, M. A., Gonzalez-Hernandez, G., Conde-Gonzalez, J. E. & Perez-Trujillo, J. P. (2002). Principal component analysis of the polyphenols content in young red wines. Food Chemistry 78, 523532.CrossRefGoogle Scholar
Ruisi, P., Frangipane, B., Amato, G., Frenda, A. S., Plaia, A., Giambalvo, D. & Saia, S. (2015) Nitrogen uptake and nitrogen fertilizer recovery in old and modern wheat genotypes grown in the presence or absence of interspecific competition. Frontiers in Plant Science 6, 185. doi: 10.3389/fpls.2015.00185 Google Scholar
Shewry, P. R., Piironen, V., Lampi, A. M., Edelmann, M., Kariluoto, S., Nurmi, T., Fernandez-Orozco, R., Ravel, C., Charmet, G., Andersson, A. A. M., Aman, P., Boros, D., Gebruers, K., Dornez, E., Courtin, C. M., Delcour, J. A., Rakszegi, M., Bedo, Z. & Ward, J. L. (2010). The HEALTHGRAIN wheat diversity screen: effect of genotype and environment on phytochemicals and dietary fiber components. Journal of Agricultural and Food Chemistry 58, 92919298.CrossRefGoogle ScholarPubMed
Singh, S., Gupta, A. K., Gupta, S. K. & Kaur, N. (2010). Effect of sowing time on protein quality and starch pasting characteristics in wheat (Triticum aestivum L.) genotypes grown under irrigated and rain-fed conditions. Food Chemistry 122, 559565.Google Scholar
Singleton, V. L., Orthofer, R. & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods in Enzymology 299, 152178.Google Scholar
Sofi, F., Whittaker, A., Cesari, F., Gori, A. M., Fiorillo, C., Becatti, M., Marotti, I., Dinelli, G., Casini, A., Abbate, R., Gensini, D. F. & Benedettelli, S. (2013). Characterization of Khorasan wheat (Kamut) and impact of a replacement diet on cardiovascular risk factors: cross-over dietary intervention study. European Journal of Clinical Nutrition 67, 190195.Google Scholar
Sofi, F., Whittaker, A., Gori, A. M., Cesari, F., Surrenti, E., Abbate, R., Gensini, D. F., Benedettelli, S. & Casini, A. (2014). Effect of Triticum turgidum subsp. turanicum wheat on irritable bowel syndrome: a double-blinded randomised dietary intervention trial. British Journal of Nutrition 111, 19921999.CrossRefGoogle ScholarPubMed
Vaccari, F. P., Ranieri, R., Matese, A. & Miglietta, F. (2007). Enhanced temperature during grain filling reduces protein concentration of durum wheat. Italian Journal of Agronomy 4, 393400.Google Scholar
Valerii, M. C., Ricci, C., Spisni, E., Di Silvestro, R., De Fazio, L., Cavazza, E., Lanzini, A., Campieri, M., Dalpiaz, A., Pavan, B., Volta, U. & Dinelli, G. (2015). Responses of peripheral blood mononucleated cells from non-celiac gluten sensitive patients to various cereal sources. Food Chemistry 176, 167174.Google Scholar
Valli, V., Danesi, F., Gianotti, A., Di Nunzio, M., Taneyo Saa, D. L. & Bordoni, A. (2016). Antioxidative and anti-inflammatory effect of in vitro digested cookies baked using different types of flours and fermentation methods. Food Research International 88, 256262.Google Scholar
Vincent, L. A., Wang, X. L., Milewska, E. J., Wan, H., Yang, F. & Swail, V. (2012). A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. Journal of Geophysical Research 117, D18110. doi: 10.1029/2012JD017859.Google Scholar
Whittaker, A., Sofi, F., Luisi, M. L. E., Rafanelli, E., Fiorillo, C., Becatti, M., Abbate, R., Casini, A., Gensini, G. F. & Benedettelli, S. (2015). An organic khorasan wheat-based replacement diet improves risk profile of patients with acute coronary syndrome: a randomized crossover trial. Nutrients 7, 34013415.Google Scholar
Whittaker, A., Dinu, M., Cesari, F., Gori, A. M., Fiorillo, C., Becatti, M., Casini, A., Marcucci, R., Benedettelli, S. & Sofi, F. (2016). A khorasan wheat-based replacement diet improves risk profile of patients with type 2 diabetes mellitus (T2DM): a randomized crossover trial. European Journal of Nutrition. [Epub ahead of print]. DOI 10.1007/s00394–016–1168–2 Google Scholar
Zhu, T., Jackson, D. S., Wehling, R. L. & Geera, B. (2008). Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique. Cereal Chemistry 85, 5158.Google Scholar