Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-04T17:38:31.545Z Has data issue: false hasContentIssue false

Infection dynamics of Cichlidogyrus tilapiae and C. sclerosus (Monogenea, Ancyrocephalinae) in Nile tilapia (Oreochromis niloticus L.) from Uganda

Published online by Cambridge University Press:  27 July 2011

P. Akoll*
Affiliation:
Department of Zoology, Faculty of Science, Makerere University, PO Box 7062, Kampala, Uganda Department of Freshwater Ecology, University of Vienna, Althanstraße 14, 1090Vienna, Austria
M.L. Fioravanti
Affiliation:
Department of Veterinary Public Health and Animal Pathology, University of Bologna, Via Tolara di Sopra, 50 – 40064Ozzano Emilia (BO), Italy
R. Konecny
Affiliation:
Department of Freshwater Ecology, University of Vienna, Althanstraße 14, 1090Vienna, Austria Environment Agency Austria, Spittelaur Lande 5, 1090Vienna, Austria
F. Schiemer
Affiliation:
Department of Freshwater Ecology, University of Vienna, Althanstraße 14, 1090Vienna, Austria
*

Abstract

The infection dynamics of the gill monogeneans Cichlidogyrus tilapiae and C. sclerosus on Oreochromis niloticus with respect to habitat type (reservoir, stream, ponds and cages), host sex, size and seasons was determined between January and November 2008. During the study period, 45.2% of the 650 fish examined were infected with Cichlidogyrus spp. The infected hosts harboured an average of 8.6 ± 3.4 parasites/fish. Across habitat types, the proportion of infected fish was not statistically different. In contrast, the number of parasites recorded on infected fish from different habitat types differed significantly. The highest parasite number was recorded in reservoir-dwelling fish and lowest in stream-dwelling hosts. Concerning sex, more female O. niloticus were infected and harboured a high number of parasites than male and sexually undifferentiated fish. A weak negative relationship was found between rainfall and monthly parasite infections. However, a higher number of parasites and proportion of infected hosts were found during dry than in wet seasons, except in ponds. Results of this study show that differential exposure due to changes in fish behaviour associated with habitat modification and sex may account for the infection difference across the sampled sites. Meanwhile, rainfall and the associated hydrological events are important factors regulating monogenean infections in tropical aquatic environments. The continuous presence of Cichlidogyrus spp. in fish provides evidence of possible parasite outbreaks, indicating the application of biosecurity measures as crucial for the success of intensive fish farming.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleby, C. (1996) Population dynamics of Gyrodactylus sp. (Monogenea) infecting the sand goby in the Oslo Fjord, Norway. Journal of Fish Biology 49, 402410.Google Scholar
Appleby, C. & Mo, A.T. (1997) Population dynamics of Gyrodactylus salaris (Monogenea) infecting Atlantic salmon, Salmo salar, parr in the River Batnfjordselva, Norway. Journal of Parasitology 83, 2330.CrossRefGoogle ScholarPubMed
Arthur, R.J. & Lumanlan-Mayo, S. (1997) Checklist of the parasites of fishes of the Philippines. FAO Fisheries Technical Paper, No. 369. 102 pp. Rome, Italy, FAO.Google Scholar
Bakke, T.A., Harris, P.D. & Cable, J. (2002) Host specificity dynamics: observations on gyrodactylid monogeneans. International Journal for Parasitology 32, 281308.Google Scholar
Boungou, M., Kabre, G.B., Marques, A. & Sawadogo, L. (2008) Dynamics of a population of five parasitic monogeneans of Oreochromis niloticus Linne, 1757 in the Dam of Loumbila and possible interest in intensive pisciculture. Pakistan Journal of Biological Sciences 11, 13171323.Google Scholar
Buchmann, K. & Bresciani, J. (1998) Microenvironment of Gyrodactylus derjavini on rainbow trout Oncorhynchus mykiss: association between mucous cell density in skin and site selection. Parasitology Research 84, 1724.CrossRefGoogle ScholarPubMed
Buchmann, K. & Lindenstrøm, T. (2002) Interactions between monogenean parasites and their fish hosts. International Journal for Parasitology 32, 309319.Google Scholar
Buchmann, K., Madsen, K.K. & Dalgaard, M.B. (2004) Homing of Gyrodactylus salaris and G. derjavini (Monogenea) on different hosts and response post-attachment. Folia Parasitologica 51, 263267.Google Scholar
Chapman, L.J., Lanciani, C.A. & Chapman, C.A. (2000) Ecology of a diplozoon parasite on the gills of the African cyprinid Barbus neumayeri. African Journal of Ecology 38, 312320.CrossRefGoogle Scholar
Cribb, T.H., Chisholm, L.A. & Bray, R.A. (2002) Diversity in the Monogenea and Digenea: does lifestyle matter? International Journal for Parasitology 32, 321328.CrossRefGoogle ScholarPubMed
Douëllou, L. (1993) Monogeneans of the genus Cichlidogyrus Paperna, 1960 (Dactylogyridae: Ancyrocephalinae) from cichlid fishes of Lake Kariba (Zimbabwe) with descriptions of five new species. Systematic Parasitology 25, 159186.CrossRefGoogle Scholar
Ergens, R. (1981) Nine species of the genus Cichlidogyrus Paperna, 1960 (Monogenea: Ancyrocephalinae) from Egyptian fishes. Folia Parasitologica 28, 205214.Google Scholar
Fellis, K.J. & Esch, G.W. (2004) Community structure and seasonal dynamics of helminth parasites in Lepomis cyanellus and L. macrochirus from Charlie's pond, North Carolina: host size and species as determinants of community structure. Journal of Parasitology 90, 4149.CrossRefGoogle ScholarPubMed
Florio, D., Gustinelli, A., Caffara, M., Turci, F., Quaglio, F., Konecny, R., Nikowitz, T., Wathuta, E.M., Magana, A., Otachi, E.O., Matolla, G.K., Warugu, H.W., Liti, D., Mbaluka, R., Thiga, B., Munguti, J., Akoll, P., Mwanja, W., Asaminew, K., Tadesse, Z. & Fioravanti, M.L. (2009) Veterinary and public health aspects in tilapia (Oreochromis niloticus niloticus) aquaculture in Kenya, Uganda and Ethiopia. Ittiopatologia 6, 5193.Google Scholar
Gonzalez-Lanza, M.C. & Alvarez-Pellitero, M.P. (1982) Description and population dynamics of Dactylogyrus legionensis n. sp. from Barbus barbus bocagei Steind. Journal of Helminthology 56, 263273.Google Scholar
Halwart, M., Soto, D. & Arthur, J.R. (2007) Cage aquaculture – regional reviews and global overview. Fisheries Technical Paper, No. 498. 241 pp. Rome, Italy, FAO.Google Scholar
Harris, P.D. & Cable, J. (2000) Gyrodactylus poeciliae n. sp. and G. milleri n. sp. (Monogenea: Gyrodactylidae) from Poecilia caucana (Steindachner) in Venezuela. Systematic Parasitology 47, 7985.Google Scholar
Jiménez-García, M.I., Vidal-Martínez, V.M. & López-Jiménez, S. (2001) Monogeneans in introduced and native Cichlids in México: evidence for transfer. Journal of Parasitology 87, 907909.Google Scholar
Khidr, A.A. (1990) Population dynamics of Enterogyrus cichlidarum (Monogenea: Ancyrocephalinae) from the stomach of Tilapia spp. in Egypt. International Journal for Parasitology 20, 741745.Google Scholar
Lafferty, K.D. (2008) Ecosystem consequences of fish parasites. Journal of Fish Biology 73, 20832093.Google Scholar
Lamková, K., Šimková, A., Palíková, M., Jurajda, P. & Lojek, A. (2007) Seasonal changes of immunocompetence and parasitism in chub (Leuciscus cephalus), a freshwater cyprinid fish. Parasitology Research 101, 775789.Google Scholar
Le Roux, L. & Avenant-Oldewage, A. (2010) Checklist of the fish parasitic genus Cichlidogyrus (Monogenea), including its cosmopolitan distribution and host species. African Journal of Aquatic Science 35, 2136.CrossRefGoogle Scholar
Livingstone, D.M. & Lotter, A.F. (1998) The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palæolimnological implications. Journal of Paleolimnology 19, 181198.CrossRefGoogle Scholar
Marcogliese, J.D. (2001) Implications of climate change for parasitism of animals in the aquatic environment. Canadian Journal of Zoology 79, 13311352.CrossRefGoogle Scholar
McCombie, A.M. (1959) Some relations between air temperatures and the surface water temperatures of lakes. Limnology and Oceanography 4, 252258.CrossRefGoogle Scholar
Mendoza-Franco, E.F., Vidal-Martınez, V.M., Cruz-Quintana, Y. & Leon, F.L.P. (2006) Monogeneans on native and introduced freshwater fishes from Cuba with the description of a new species of Salsuginus Beverley-Burton, 1984 from Limia vittata (Poeciliidae). Systematic Parasitology 64, 181190.Google Scholar
Michel, C. (1989) Pathology of tilapias. Aquatic Living Resources 2, 117126.Google Scholar
N'Douba, V., Thys Van Den Audenaerde, D.F.E. & Pariselle, A. (1997) Description of a new species of monogenean gill parasite on Tilapia guineensis (Bleeker, 1862) (Cichlidae) in Ivory Coast. Journal of African Zoology 111, 429433.Google Scholar
Paperna, I. (1963) Enterogyrus cichlidarum n. gen. n. sp., a monogenetic trematode parasitic in the intestine of fish. The Bulletin of the Research Council of Israel 11B, 183187.Google Scholar
Paperna, I. (1996) Parasites, infestations and diseases of fishes in Africa – an update. 220 pp. CIFA Technical Paper, No. 31. Rome, Italy.Google Scholar
Pariselle, A. & Euzet, L. (1995) Gill parasites of the genus Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae) from Tilapia guineensis (Bleeker, 1862), with descriptions of six new species. Systematic Parasitology 30, 187198.Google Scholar
Pariselle, A. & Euzet, L. (1996) Cichlidogyrus paperna, 1960 (Monogenea, Ancyrocephalidae): Gill parasites from West African Cichlidae of the subgenus Coptodon Regan, 1920 (Pisces), with descriptions of six new species. Systematic Parasitology 34, 109124.CrossRefGoogle Scholar
Pariselle, A. & Euzet, L. (1997) New species of Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae) from the gills of Sarotherodon occidentalis (Daget) (Osteichthyes, Cichlidae) in Guinea and Sierra Leone (West Africa). Systematic Parasitology 38, 221230.CrossRefGoogle Scholar
Pariselle, A. & Euzet, L. (1998) Five new species of Cichlidogyrus (Monogenea: Ancyrocephalidae) from Tilapia brevimanus, T. buttikoferi and T. cessiana from Guinea, Ivory Coast and Sierra Leone (West Africa). Folia Parasitologica 45, 275282.Google Scholar
Pariselle, A. & Euzet, L. (2003) Four new species of Cichlidogyrus (Monogenea: Ancyrocephalidae), gill parasites of Tilapia cabrae (Teleostei: Cichlidae), with discussion on relative length of haptoral sclerites. Folia Parasitologica 50, 195201.Google Scholar
Pariselle, A. & Euzet, L. (2004) Two new species of Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae) gill parasites on Hemichromis fasciatus (Pisces, Cichlidae) in Africa, with remarks on parasite geographical distribution. Parasite 11, 359364.Google Scholar
Pariselle, A., Bilong Bilong, C.F. & Euzet, L. (2003) Four new species of Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae), all gill parasites from African mouthbreeder tilapias of the genera Sarotherodon and Oreochromis (Pisces, Cichlidae), with a redescription of C. thurstonae Ergens, 1981. Systematic Parasitology 56, 201210.Google Scholar
Pech, D., Aguirre-Macedo, M.L., Lewis, J.W. & Vidal-Martínez, V.M. (2010) Rainfall induces time-lagged changes in the proportion of tropical aquatic hosts infected with metazoan parasites. International Journal for Parasitology 40, 937944.Google Scholar
Philippart, J.-Cl. & Ruwet, J.-Cl. (1982) Ecology and distribution of tilapias. pp. 1559in Pullin, R.S.V. & Lowe-McConnell, R.H. (Eds) The biology and culture of tilapias. ICLARM Conference Proceedings 7. Manila, International Center for Living Aquatic Resources Management.Google Scholar
R Development Core Team (2010) R: A programming environment for data analysis and graphics. Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Roberts, R.J. & Summerville, C. (1982) Diseases of tilapia. pp. 247263in Pullin, R.S.V. & Lowe-McConnell, R.H. (Eds) The biology and culture of tilapias. ICLARM Conference Proceedings 7. Manila, International Center for Living Aquatic Resources Management.Google Scholar
Seng, L.T., Tan, Z. & Enright, W.J. (2006) Important parasitic diseases in cultured marine fish in the Asia-Pacific region. AQUA Culture AsiaPacific Magazine 2, 1416.Google Scholar
Simkova, A., Sasal, P., Kadlec, D. & Gelnar, M. (2001) Water temperature influencing dactylogyrid species communities in roach, Rutilus rutilus, in the Czech Republic. Journal of Helminthology 75, 373383.Google Scholar
Simkova, A., Jarkovsky, J., Koubkova, B., Barus, V. & Prokes, M. (2004) Associations between fish reproductive cycle and the dynamics of metazoan parasite infestation. Parasitology Research 95, 6572.CrossRefGoogle Scholar
Stefan, G.H. & Preud'homme, E.B. (1993) Stream temperature estimation from air temperature. Water Resources Bulletin 29, 2745.Google Scholar
van Oosterhout, C., Mohammed, R.S., Hansen, H., Archard, G.A., McMullan, M., Weese, D.J. & Cable, J. (2007) Selection by parasites in spate conditions in wild Trinidadian guppies (Poecilia reticulata). International Journal for Parasitology 37, 805812.CrossRefGoogle ScholarPubMed
Viozzi, G.P., Semenas, G.L. & Gutierrez, P. (2005) Population dynamics of Philureter trigoniopsis (Monogenea: Ancyrocephalinae) from urinary organs of Galaxias maculates (Osmeriformes: Galaxiidae) in a cold temperate Andean Patagonian lake (Argentina). Journal of Parasitology 91, 13681373.Google Scholar
Xu, D.-H., Shoemaker, C.A. & Klesius, P.H. (2007) Evaluation of the link between gyrodactylosis and streptococcosis of Nile tilapia, Oreochromis niloticus (L.). Journal of Fish Diseases 30, 233238.Google Scholar
Zuk, M. & McKean, A.K. (1996) Sex differences in parasite infestations: patterns and processes. International Journal for Parasitology 26, 10091024.Google Scholar