Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-04T12:38:00.086Z Has data issue: false hasContentIssue false

The physical aspects of energy transduction in biological systems

Published online by Cambridge University Press:  17 March 2009

L. A. Blumenfeld
Affiliation:
Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow, USSR

Extract

The primary energy sources for all the organisms living on the Earth are either sunlight or the energy liberated during chemical transformations (mainly, oxidation) of certain substances – food. Within the cell this energy is transformed, accumulated, and then utilized to ensure a multitude of processes (synthesis of new low- and high-molecular compounds, muscle contraction, luminescence, transfer of ions counter to their concentration gradients, etc.).

The role of universal ‘energy keeper’, of the, as it were, ‘energy small change’ in biology is played by the molecules of adenosine tri- phosphate (ATP) whose hydrolytic dissociation in water solutions with the formation of adenosine diphosphate (ADP) and inorganic phosphate (P1) is accompanied by a rather strong decrease of system energy.†

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonini, E.Brumori, M., Colosimo, A., Greenwood, C. & Wilson, M. T. (1977). Oxygen ‘pulsed’ cytochrome C oxidase: functional properties and catalytic relevance. Proc. natn. Acad. Sci. USA 74, 31283132.CrossRefGoogle ScholarPubMed
Baltscheffsky, M. (1974). Reversible energization in photosynthesis as measured with endogenous carotenoid. In Dynamics of energy-transducing membranes (ed. Ernster, , Estabrook, , Slater, ), pp. 365376. Amsterdam:Elsevier.Google Scholar
Baltscheffsky, M. & Hall, D. O.Photophosphorylation and the 518 nm absorbance change in tightly coupled chloroplasts. FEBS Lett. 39, 345348.CrossRefGoogle Scholar
Banks, B. E. C. (1969). Thermodynamics and biology. Chem. in Britain 5, 514519.Google ScholarPubMed
Banks, B. E. C. & Vernon, C. A. (1970). Reassessment of the role of ATP in vivo. J. theor. Biol. 29, 301326.CrossRefGoogle ScholarPubMed
Barber, J. (1972). Method of estimating the magnitude of the lightinduced electrical potential across the thylakoid membranes. FEBS Lett. 20, 251254.CrossRefGoogle ScholarPubMed
Barber, J. & Kraan, G. P. B. (1970). Salt induced light emission from chloroplasts. Biochim. biophys. Acta 197, 4959.CrossRefGoogle ScholarPubMed
Belitser, V. A. & Cybakova, E. T. (1939). On the mechanism of the phosphorylation coupled with respiration. Biochemistry (USSR) 4, 516535.Google Scholar
Bennun, A. (1971). Hypothesis for coupling energy transduction with ATP synthesis or ATP hydrolysis. Nature (New Biol.) 233, 58.CrossRefGoogle ScholarPubMed
Blumenfeld, L. A. (1972). On the elementary act in enzymatic catalysis. Biophysics (USSR) 17, 954959.Google Scholar
Blumenfeld, L. A. (1974). The Problems of Biological Physics. Nauka (USSR), Moscow (German translation: Akademy Verlag, Berlin, DDR, 1977; English translation, Pergamon Press, England, 1978).Google Scholar
Blumenfeld, L. A. (1976 a). The physical aspects of enzyme functioning. J. theor. Biol. 58, 269284.CrossRefGoogle ScholarPubMed
Blumenfeld, L. A. (1976 b). On certain physical aspects of intracellular energy transformation. Biophysics (USSR) 21, 946957.Google Scholar
Blumenfeld, L. A.Davydov, R. M., Magonov, S. N. & Vilu, R. O. (1974 a). Studies on the conformational changes of metalloproteins induced by electrons in water-ethylene glycol solutions at low temperature. Hemoglobin. FEBS Lett. 49, 246248.CrossRefGoogle Scholar
Blumenfeld, L. A.Davydov, R. M., Fel', N. S., Magonov, S. N. & Vilu, R. O. (1974b). Studies on the conformational changes of metalloproteins induced by electrons in water-ethylene glycol solutions at low temperatures. Cytochrome C. FEBS Lett. 45, 256258.CrossRefGoogle ScholarPubMed
Blumenfeld, L. A.Burbaev, D. SH., Vanin, A. F., Vilu, R. O., Davydov, R. M. & Magonov, S. N. (1974 c). Nonequilibrium structures of enzyme metalloorganic centers. J. struct. Chem. (USSR) 15, 10301039.Google Scholar
Blumenfeld, L. A.Burbaev, D. SH., Davydov, R. M., Kubrina, L. N. & Vanin, A. F. (1975). Studies on the conformational changes of metalloproteins induced by electrons in water-ethylene glycol solution, at low temperatures. Adrenodoxin. Biochim. biophys. Acta 39, 512516.CrossRefGoogle Scholar
Blumenfeld, L. A. & Chernavskii, D. S.Tunnelling of electrons in biological processes. J. theor. Biol. 39, 17.CrossRefGoogle Scholar
Blumenfeld, L. A.Chernyakovskii, F. P., Gribanov, V. A. & Kanevskh, I. M. (1972). On the motion of polymer molecules studied by the electrochromism method. J. Macromol. Sci. –Chemistry A6, 12011225.CrossRefGoogle Scholar
Blumenfeld, L. A.Greschner, S., Genkin, M. V., Davydov, R. M. & Roldugina, N. M. (1976). Kinetic study of conformational changes in ferricytochrome C induced by pH change. Stud. Biophys. 57, 110.Google Scholar
Blumenfeld, L. A.Davydov, R. M., Kuprin, S. P. & Stepanov, S. V. (1977 a). Chemical characteristics of metalloproteins in conformationally nonequilibrium states. Biophysics (USSR) 22, 977994.Google Scholar
Blumenfeld, L. A.Burbaev, D. SH., Lebanidze, A. V. & Vanin, A. F. (1977 b). EPR study of the structurally nonequilibrium states of iron- sulphur centers of soluble pea ferredoxin, membrane-bound ferredoxin in bean chioroplasts and N-a centre in mitochondria. Stud. Biophys. 63, 143148.Google Scholar
Blumenfeld, L. A.Ermakov, Ju. A. & Pasechnik, V. I. (1977 c). Kinetics of hemoglobin – carbon oxide reaction. 3. The appearance of conformationally nonequilibrium Hb molecules in the course of CO binding and dissociation processes. Biophysics (USSR) 22, 814.Google Scholar
Blumenfeld, L. A.Ermakov, Ju. A. & Pasechnik, V. I. (1977 d). Kinetics of hemoglobin – carbon oxide reaction. 4. Various conditions of photolytic illumination. Biophysics (USSR) 22, 535538.Google Scholar
Blumenfeld, L. A.Goldfeld, M. G. & Dmitrovsky, L. G. (1977 e). Photophosphorylation in flash-excited chioroplasts. Stud. Biophys. 65, 6976.Google Scholar
Blumenfeld, L. A. & Koltover, V. K. (1972). Energy transformation and conformational transition in mitochondrial membranes as relaxation processes. Molec. Biol. (USSR) 6, 161166.Google Scholar
Boyer, P. D. (1977). Conformational coupling in oxidative phosphorylation. Trends Biochem. Sci. 2, 3841.CrossRefGoogle Scholar
Boyer, P. D.Cross, R. L. & Momsen, W. (1973). A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc. natn. Acad. Sci. USA 70, 28372839.CrossRefGoogle ScholarPubMed
Brillouin, L. (1956). Science and Information Theory. New York:Academic Press.CrossRefGoogle Scholar
Chance, B. (1972). The nature of electron transfer and energy coupling reactions. FEBS Lett. 23, 320.CrossRefGoogle ScholarPubMed
Chance, B. & Hollunger, G. (1957). Sites of energy conservation in oxidative phosphorylation. J. Amer. Chem. Soc. 79, 2970.CrossRefGoogle Scholar
Chance, B.Pring, M., Azzi, A., Lee, C. P. & Mela, L. (1969). Kinetics of membrane transitions. Biophys. J. 9, A 90.Google Scholar
Chance, B. & Williams, G. R. (1955). A method for the localization of sites for oxidative phosphorylation. Nature 176, 250254.CrossRefGoogle ScholarPubMed
Chance, B. & Williams, G. R. (1956). The respiratory chain and oxidative phosphorylation. Adv. Enzymol. 17, 65134.Google ScholarPubMed
Chance, B.Wilson, D. F., Dutton, P. L. & Erecinska, M. (1970). Energy- coupling mechanisms in mitochondria: kinetic, spectroscopic, and thermodynamic properties of an energy-transducing form of cytochrome b. Proc. Acad. Sci. USA 66, 11751182.CrossRefGoogle ScholarPubMed
Chernavskii, N. M. & Chernavskii, D. S. (1977). Tunnel transport of electrons in photosynthesis. Moscow University Publ. USSR.Google Scholar
Chismadzhev, Ju. A.Pastushenko, V. F. & Blumenfeld, L. A. (1976). To the dynamical model of enzymatic catalysis. Biophysics (USSR) 21, 208213.Google Scholar
Davydov, R. M.Kuprin, S. P., Fel', N. S., Postnikova, G. B. & Blumenfeld, L. A. (1977). A study on the reactivity of metalloproteins in conformationally nonequilibrium states by pulse radiolysis method (myoglobin). DAN USSR 225, 950952.Google Scholar
Devault, D. (1976). Theory of iron-sulphur center N-2 oxidation and reduction by ATP. J. theor. Biol. 62, 1151139.CrossRefGoogle Scholar
Engelhardt, W. A. (1930). Ortho- und Phyrophosphat in aeroben und anaeroben Stoffwechsel der Blutzellen.Biochem. Z. 227, 1638.Google Scholar
Engelhardt, W. A. (1932). Die Beziehungen zwischen Atmung und Pyrophosphatumsatz in Vogelerithrocythen. Biochem. Z. 251, 343368.Google Scholar
Erecinska, M.Veech, R. I. & Wilson, D. F. (1974). Thermodynamic relationships between the oxidation-reduction and the ATP synthesis in suspensions of isolated pigeon heart mitochondria. Archs Biochem. Biophys. 160, 412421.CrossRefGoogle ScholarPubMed
Ermakov, Ju. A.Kuprin, S. P. & Pasechnik, V. I. (1976). Kinetics of hemoglobin – carbon oxide reaction. 2. Analysis of kinetic schemes in linear approximation. Biophysics (USSR) 21, 788793.Google Scholar
Ermakov, Ju. A. & Pasechnik, V. I. (1976). Kinetics of hemoglobin – carbon oxide reaction. 1. Relaxation measurements at photolytic illumination. Biophysics (USSR) 21, 629633.Google ScholarPubMed
Fain, V. M. (1976). On the theory of rate processes: the role of coherent mechanical vibrations. J. Chem. Phys. 65, 18541866.CrossRefGoogle Scholar
Faraggi, M. & Pecht, J. (1972). Elementary steps in the action of electron transfer proteins. Isr. J. Chem. 10, 10211039.CrossRefGoogle Scholar
Feinmann, R. P. (1939). Forces in molecules. Physiol. Rev. 56, 340343.CrossRefGoogle Scholar
Fel', N. S.Dolin, P. I., Davydov, R. M., Vanag, V. K., Kuprin, S. P., Roldugina, N. M. & Blumenfeld, L. A. (1977). A study of dynamical characteristics of hemoglobin and its complexes in conformationally nonequilibrium states by pulse radiolysis method. Electrochemistry(USSR) 13, 909913.Google Scholar
Gillespie, E. G.Maw, G. A. & Vernon, C. A. (1953). The concept of phosphate bond energy. Nature 171, 11471149.CrossRefGoogle ScholarPubMed
Goldfeld, M. G.Dmitrovsky, L. G. & Blumenfeld, L. A. (1977). Photophosphorylation in chloroplasts at pulse illumination regime. Biophysics(USSR) 22, 357359.Google Scholar
Goldfeld, M. G.Dmitrovsky, L. G. & Blumenfeld, L. A. (1978 a). Phosphorylation in chloroplasts in the conditions of acid stroke. Biophysics (USSR) 23 (N3).Google Scholar
Goldfeld, M. G.Dmitrovsky, D. G. & Blumenfeld, L. A. (1978 b).Temperature dependence of photophosphorylation in chioroplasts and coupling mechanism. Molec. Biol. (USSR) 12 (in the Press).Google Scholar
Govindjee, , Govindjee, R. (1975). Introduction to photosynthesis. In Bioenergetics of Photosynthesis (ed. Govindjee, ), pp. 250. New York, London: Academic Press.CrossRefGoogle Scholar
GrÄber, P. & Witt, H. T. (1976). Relations between the electrical potential, pH, gradient, proton flux and phosphorylation in the photosynthetic membrane. Biochim. biophys. Acta 423, 141163.CrossRefGoogle ScholarPubMed
Gray, B. F. (1975). Reversibility and biological machines. Nature 253, 436437.CrossRefGoogle ScholarPubMed
Gray, B. F. & Gonda, I. (1977 a). The sliding filament model of muscle contraction. I. Quantum mechanical formalism. J. theor. Biol. 69, 167186.CrossRefGoogle ScholarPubMed
Gray, B. F. & Gonda, I. (1977 b). The sliding filament model of muscle contraction. II. The energetic and dynamical predictions of a quantum mechanical transducer model. J. theor. Biol. 69, 187230.CrossRefGoogle ScholarPubMed
Green, D. E.Asai, J., Harris, R. A. & Penniston, J. (1968). The conformational basis of energy transformation in membrane system. III. Configurational changes in the mitochondrial inner membrane induced by changes in functional states. Archs. Biochem. Biophys. 125, 684705.CrossRefGoogle Scholar
Green, D. E. & Fleisher, S. (1962). On the molecular organization of biological tranducing systems. In Horizons in Biochemistry(ed. Kasha, M.Pullman, B.), pp. 381420. New York: Academic Press.Google Scholar
Green, D. E. & Ji, S. (1972). Electrochemical model of mitochondrial structure and function. Proc. natn. Acad. Sci. USA 69, 726729.CrossRefGoogle Scholar
Greschner, S.Blumenfeld, L. A., Genkin, M. V. & Roldugina, N. M. (1976). Kinetics of conformational changes in acidic ferricytochrome C induced by salts. Stud. Biophys. 57, 109.Google Scholar
Harris, R. A.Penniston, J. T., Asai, J. & Green, D. E. (1968). The conformational basis of energy transformation in membrane systems. II. Correlation between conformational change and function states. Proc. natn. Acad. Sci. USA 59, 830837.CrossRefGoogle Scholar
Hind, G. & Jagendorf, A. T. (1963). Separation of light and dark stages in photophosphorylation. Proc. natn. Acad. Sci. USA 49, 715722.CrossRefGoogle ScholarPubMed
Hind, G. & Jagendorf, A. T. (1965). Effect of uncouplers on the conformational and high energy states of chioroplasts. J. biol. Chem. 240, 32023209.CrossRefGoogle Scholar
Huxley, A. F. (1970). Energetics of muscle. Chem. in Britain 6, 477479.Google ScholarPubMed
Jackson, J. B. & Crofts, A. R. (1969). High energy state in chromatophores from Rhodopseudomonas sphéroides. FEBS Lett. 4, 185189.CrossRefGoogle Scholar
Jagendorf, A. T. (1975). Mechanism of photophosphorylation. In Bioenergetics of Photosynthesis (ed. Govindjee, ), pp. 413494. New York, London: Academic Press.CrossRefGoogle Scholar
Jagendorf, A. T. & Neumann, J. (1965). Effect of uncouplers on the light- induced pH rise in spinach chloroplasts. J. biol. Chem. 240, 32103214.CrossRefGoogle ScholarPubMed
Jagendorf, A. T. & Uribe, E. (1966). ATP formation caused by acid-base transition of spinach chloroplasts. Proc. natn. Acad. Sci. USA 55, 170177.CrossRefGoogle ScholarPubMed
Junge, W.Rumberg, B. & Schröder, H. (1970). The necessity of an electric potential difference and its use for photophosphorylation in short flash groups. Eur. J. Biochem. 14, 575581.CrossRefGoogle ScholarPubMed
Kalckar, H. (1937). Phosphorylation in kidney tissue. Enzymologia 2, 4752.Google Scholar
Kalckar, H. (1939). The nature of phosphoric esters formed in kidney extracts. Biochem. J. 33, 631641.CrossRefGoogle ScholarPubMed
Kinnally, K. W. & Tedeshi, H. (1976). Phosphorylation without proton- motive force. Biophys. J. 16, 18.Google Scholar
Klingenberg, M. (1968). The respiratory chain. In Biological Oxidations pp. 354. Interscience.Google Scholar
Koltover, V. K.Reichman, L. M., Jasaitis, A. A. & Blumenfeld, L. A. (1971). A study of spin-probe solubility in mitochondrial membranes correlated with ATP-dependent conformational changes. Biochim. biophys. Ada 234, 306310.CrossRefGoogle ScholarPubMed
Koshland, D. E. Jr, Nemethy, G. & Filmer, D. (1966). Comparison of experimental binding data and theoretical models in protein containing subunits. Biochemistry N.Y. 5, 365385.CrossRefGoogle Scholar
Kuprijanov, V. V.Pobotchin, A. S. & Luzikov, V. N. (1976). Steady state kinetics analysis for uncoupled electron transfer through cytochrome chain in submitochondrial particles. Biochemistry (USSR) 41, 18891897.Google Scholar
Kuprin, S. P.Davydov, R. M., Fel', N. S., Nalbandjan, R. M. & Blumenfeld, L. A. (1977). A study on the reactivity of metalloproteins in conformationally nonequilibrium states by pulse radiolysis method (cytochrome C). DAN USSR 235, 11931195.Google Scholar
Lichtin, U. N.Shafferman, A. & Stein, G. (1973). Reaction of cytochrome C with one-electron redox reagents. 1. Reduction of ferncytochrome C by the hydrated electrons produced by pulse radiolysis. Biochim. biophys. Acta. 314, 117135.CrossRefGoogle Scholar
Lifschitz, I. M. (1968). Some aspects of statistical theory of biopolymers. J. Exp. Theor. Phys. (USSR) 55, 24082422.Google Scholar
Lifschitz, I. M. & Grosberg, A. Ju. (1973). The phase diagram of polymer globulae and the problem of its spatial structure self-organization. J. Exp. Theor. Phys. (USSR) 65, 23992420.Google Scholar
Magnusson, R. P. & McCarty, R. E. (1976). Acid-induced phosphorylation of adenosine 5'-diphosphate bound to coupling factor I in spinach chloroplasts thylakoids. J. Biol. Chem. 251, 68746877.CrossRefGoogle Scholar
McClare, C. W. F. (1971). Chemical machines, Maxwell's demon and living organisms. J. theor. Biol. 30, 134.CrossRefGoogle ScholarPubMed
McClare, C. W. F. (1972). In defence of the high energy phosphate bond. J. theor Biol. 35, 233246.CrossRefGoogle ScholarPubMed
Medvedeva, N. V.Blumenfeld, L. A. & Ruuge, E. K. (1974). On the relaxational character of the activity changes of certain proteins by jump- like pH and temperature transitions. Biochemistry (USSR) 39, 9991001.Google Scholar
Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transport by a chemiosmotic type of mechanism. Nature 191, 144148.CrossRefGoogle Scholar
Monod, J.Wyman, J. & Changeux, J. P. (1965). On the nature of allosteric transitions: a plausible model. J. molec. Biol. 12, 88118.CrossRefGoogle ScholarPubMed
Muraoka, S. & Slater, E. C. (1969). Redox state of respiratory chain components in rat liver mitochondria. I. Effect of varying substrate concentration and azide. Biochim. biophys. Ada 180, 221226.CrossRefGoogle ScholarPubMed
Nelson, N.Nelson, H. & Racker, E. (1972). Partial resolution of the enzymes catalysing photophosphorylation. XII. Purification and properties of a chloroplast coupling factor I. J. biol. Chem. 247, 76577662.CrossRefGoogle Scholar
Nichols, D. G. (1974.). The influence of respiration and ATP hydrolysis on the proton electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur. J.Biochem. 50, 305315.CrossRefGoogle Scholar
Ochoa, S. (1941). Coupling of phosphorylation with oxidation of pyruvic acid in brain. J. biol. Chem. 138, 751773.CrossRefGoogle Scholar
Ochoa, S. (1943). Efficiency of aerobic phosphorylation in cell free heart extracts. J. biol. Chem. 151, 493505.CrossRefGoogle Scholar
Ohnishi, T., Salerno, I. S., Winter, D. B., Lim, I., Yu, C. A., Yu, L. & King, T. E. (1976). Thermodynamic and EPR characteristics of wo ferredoxin-type iron-sulphur centers in the succinate-ubiquinone reductase segment of the respiratory chain. J. biol. Chem. 251, 20942104.CrossRefGoogle Scholar
Ormw-Johnson, N. R.Hansen, R. E. & Beinert, H. (1974). EPR-detectable electron acceptor in beef-heart mitochondria. Reduced DPNH-ubiquinone reductase segment of the electron transfer system. J. biol. Chem. 249, 19221927.CrossRefGoogle Scholar
Ort, D. (1976). On the mechanism of control of photosynthetic electron transport by phosphorylation. FEBS Lett. 69, 8185.CrossRefGoogle ScholarPubMed
Ort, D. & Dilley, R. A. (1976). Photophosphorylation as a function of illumination time. I. Effects of permeant cations and permeant anions. Biochim. biophys. Acta 449, 95107.CrossRefGoogle ScholarPubMed
Ort, D., Dilley, R. A. & Good, N. E. (1976). Photophosphorylation as a function of illumination time. II. Effects of permeant buffers. Biochem. biophys. Acta 449, 108124.Google ScholarPubMed
Packer, L. (1966). Evidence of contractivity in chloroplasts. In Biochemistry of Chloroplasts, vol. I (ed. Goodwin, T. V.), pp. 233242. London: Academic Press.Google Scholar
Pasechnik, V. I. (1976). On the features of relaxation experiments with proteins. Biophysics (USSR) 21, 746747.Google Scholar
Pauling, L. (1970). Structure of high-energy molecules. Chem. in Britain 6, 468472.Google ScholarPubMed
Pecht, J. & Faraggi, M. (1972). Electron transfer to ferricytochrome C: reaction with hydrated electron and conformational changes involved. Proc. natn. Acad. Sci. USA 69, 902906.CrossRefGoogle Scholar
Penniston, J. T.Harris, R. A., Asai, J. & Green, D. E. (1968). The conformational basis of energy transformations in membrane systems. I. Conformational changes in mitochondria. Proc. natn. Acad. Sci. USA 59, 624631.CrossRefGoogle ScholarPubMed
Post, R. L.Taniguchit, K. & Toda, G. (1975). Adenosine triphosphate synthesis by sodium, potassium adenosine triphosphatase. In Molecular Aspects of Membrane Phenomena, pp.92103. Berlin.CrossRefGoogle Scholar
Racker, E. (1965). Mechanisms in Bioenergetics. New York: Academic Press.Google Scholar
Rosen, S.Branden, R., Vängård, T. & Malmström, G. (1977). EPR evidence for an active form of cytochrome C oxidase different from the resting enzyme. FEBS Lett. 74, 2530.CrossRefGoogle ScholarPubMed
Rottenberg, H.Grunwald, T. & Avron, M. (1972). Determination of ΔpH in chloroplasts. I. Distribution of /14C/Methylamine. Eur. J. Biochem. 25, 5463.CrossRefGoogle Scholar
Saha, D.Izawa, S. & Good, N. E. (1970). Photophosphorylation as a function of light intensity. Biochim. biophys. Acta 223, 158164.CrossRefGoogle ScholarPubMed
Shen, Y. K. & Shen, G. M. (1962). Studies on photophosphorylation. II. The light intensity effect and intermediate steps of photophosphorylation. Scientia Sin II, 10971106.Google Scholar
Schilov, A. N. (1905). On the Coupled Oxidation Reactions. Moscow.Google Scholar
Slater, E. S. (1953). Mechanism of phosphorylation in the respiratory chain. Nature 172, 975987.CrossRefGoogle ScholarPubMed
Slater, E. C. (1971). The coupling between energy-yielding and energy- utilizing reactions in mitochondria. Q. Rev. Biophys. 4, 3572.CrossRefGoogle ScholarPubMed
Strichartz, G. R. & Chance, B. (1972). Absorbance changes at 520 nm caused by salt addition to chloroplast suspensions in the dark. Biochim. biophys. Acta 256, 7184.CrossRefGoogle ScholarPubMed
Tupper, J. T. & Tedeshi, H. (1969). Mitochondrial membrane potentials measured with microelectrodes: probable ionic basis. Science N. V. 166, 15391540.CrossRefGoogle ScholarPubMed
Tyszkiewicz, E. & Roux, E. (1975). Effects of low temperatures on formation and conservation of high energy state (Xe) appearing in spinach chloroplasts during the light step of the two-stage phosphorylation. I. Formation of Xe below 0 °C. II. Conservation of Xe between -30 °C and - 196 °C. Biochim. biophys. Res. Commun. 65, 14001408.CrossRefGoogle Scholar
Wang, J. H. & Jang, M. (1976). Generation of ATP by chloroplasts through solvent perturbation. Biochim. biophys. Res. Commun. 73, 673678.CrossRefGoogle ScholarPubMed
Wilkström, M. F. K. & Saari, H. T. (1977). The mechanism of energy conservation and transduction by mitochondrial cytochrome C oxidase. Biochim. biophys. Acta 462, 347361.CrossRefGoogle Scholar
Williams, R. J. P. (1974). The separation of electrons and protons during electron transfer: the distinction between membrane potentials and transmembrane gradients. Ann. N.Y. Acad. Sci. 227, 98107.CrossRefGoogle ScholarPubMed
Wilkie, D. (1970). Thermodynamics and biology. Chem. in Britain 6, 472476.Google ScholarPubMed
Witt, H. T. (1972). Energy transduction in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. J. Bioenerg. 3, 4754.CrossRefGoogle ScholarPubMed
Witt, H. T. (1975). Primary acts of energy conservation in the functional membrane of photosynthesis. In Bioenergetics of Photosynthesis (ed. Govindjee, ), pp. 493554. New York: Academic Press.CrossRefGoogle Scholar
Yamamoto, T. & Tonomura, Y. (1975). pH jump-induced phosphorylation of adenosine 5'-diphosphate in thylakoidal membranes. Dependence of the rate on pH and concentration of substrates. J. Biochem., Tokyo 77, 137146.Google Scholar