Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T09:52:07.042Z Has data issue: false hasContentIssue false

Unexpected Problems in AMS 14C Dating of Fen Peat

Published online by Cambridge University Press:  26 July 2016

Minna Väliranta*
Affiliation:
Department of Environmental Sciences, P.O. Box 65, FI-00014 University of Helsinki, Finland
Markku Oinonen
Affiliation:
Finnish Museum of Natural History - LUOMUS, Laboratory of Chronology, P.O. Box 64, FI-00014 University of Helsinki, Finland
Heikki Seppä
Affiliation:
Department of Geosciences and Geography, P.O. Box 64, University of Helsinki, FI-00014 Helsinki, Finland
Sanna Korkonen
Affiliation:
Department of Environmental Sciences, P.O. Box 65, FI-00014 University of Helsinki, Finland
Sari Juutinen
Affiliation:
Peatland Ecology Group, Department of Forest Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
Eeva-Stiina Tuittila
Affiliation:
School of Forest Sciences, P.O. Box 111, University of Eastern Finland, FI-80101 Joensuu, Finland
*
2. Corresponding author. Email: minna.valiranta@helsinki.fi.

Abstract

Four fen peat sequences in northern Finland were dated by the accelerator mass spectrometry (AMS) radiocarbon method in order to study past peatland dynamics and carbon accumulation patterns. Initially, plant macrofossils were used for dating. However, the dates were severely disordered, with marked inversions in all sequences. In one 140-cm peat core, for example, all ages fell within a ∼1000-yr time window. Following these unreliable results, a few bulk peat samples were dated to help assess if any of the plant macrofossil-derived dates were reliable. Bulk dates did not help to solve the problem. This study evaluates the possible sources of error but is unable to single out one clear cause. It is probable that many factors related to the fen environment, such as flooding and root intrusion, may have contributed to the errors. Peat plant macrofossils and bulk peat samples are considered to be reliable dating materials, but the examples given herein highlight the difficulties that can be associated with AMS dating of peat samples.

Type
Articles
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnekow, L, Possnert, G, Sandgren, P. 1998. AMS 14C chronologies of Holocene lake sediments in the Abisko area, northern Sweden – a comparison between dated bulk sediment and macrofossil samples. Geologiska Föreningens Stockholm Förhandlingar 120(1):5967.Google Scholar
Billett, M, Garnett, M, Dinsmore, K, Leith, F. 2013. Source and age of carbon in peatland surface waters: new insights from 14C analysis. Abstract EGU2013-7595, EGU General Assembly, 7–12 April 2013, Vienna, Austria.Google Scholar
Blaauw, M, van der Plicht, J, van Geel, B. 2004. Radiocarbon dating of bulk peat samples from raised bogs: non-existence of a previously reported ‘reservoir effect’? Quaternary Science Reviews 23(14–15):1537–42.Google Scholar
Bronk Ramsey, C. 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3):1023–45.CrossRefGoogle Scholar
Donner, J, Jungner, H, Vasari, Y. 1971. The hard-water effect on radiocarbon measurements of samples from Säynälampi, north-east Finland. Commentationes Physico-Mathematicae 41:307–10.Google Scholar
Glaser, PH, Volin, JH, Givnish, TJ, Hansen, BCS, Stricker, CA. 2012. Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: rates, drivers, and sources of error. Journal of Geophysical Research 117: G03026, doi:10.1029/2011JG001821.Google Scholar
Head, K, Turney, CSM, Pilcher, JR, Palmer, JG, Baillie, MGL. 2007. Problems with identifying the ‘8200-year cold event’ in terrestrial records of the Atlantic seaboard: a case study from Dooagh, Achill Island, Ireland. Journal of Quaternary Science 22(1):6575.CrossRefGoogle Scholar
Juutinen, S, Väliranta, M, Kuutti, V, Laine, AM, Virtanen, T, Seppä, H, Weckström, J, Tuittila, E-S. 2013. Short-term and long-term carbon dynamics in a northern peatland-stream-lake continuum: a catchment approach. Journal of Geophysical Research: Biogeosciences 118(1):171–83.Google Scholar
Kilian, MR, van der Plicht, J, van Geel, B. 1995. Dating raised bogs: new aspects of AMS 14C wiggle matching, a reservoir effect and climate change. Quaternary Science Reviews 14(10):959–66.Google Scholar
Kultti, S, Väliranta, M, Sarmaja-Korjonen, K, Solovieva, N, Virtanen, T, Kauppila, T, Eronen, M. 2003. Palaeoecological evidence of changes in vegetation and climate during the Holocene in the pre-Polar Urals, Northeast European Russia. Journal of Quaternary Science 18(6):503–20.Google Scholar
Larmola, T, Tuittila, ES, Tiirola, M, Nykänen, H, Martikainen, PJ, Yrjälä, K, Tuomivirta, T, Fritze, H. 2010. The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology 91(8):2356–65.Google Scholar
Mäkelä, E. 1998. The Holocene history of Betula at Lake Iilompolo, Inari Lapland, northeastern Finland. The Holocene 8(1):5567.Google Scholar
Mäkilä, M, Moisanen, M. 2007. Holocene lateral expansion and carbon accumulation of Luovuoma, a northern fen in Finnish Lapland. Boreas 36(2):198210.CrossRefGoogle Scholar
McGeehin, J, Burr, GS, Jull, AJT, Reines, D, Gosse, J, Davis, PT, Muhs, D, Southon, JR. 2001. Stepped-combustion 14C dating of sediment: a comparison with established techniques. Radiocarbon 43(2A):255–61.Google Scholar
McGeehin, J, Burr, GS, Hodgins, G, Bennett, SJ, Robbins, JA, Morehead, N, Markewich, H. 2004. Stepped-combustion 14C dating of bomb carbon in lake sediment. Radiocarbon 46(1):893900.Google Scholar
Nilsson, M, Klarqvist, M, Bohlin, E, Possnert, G. 2001. Variation in 14C age of macrofossils and different fractions of minute peat samples dated by AMS. The Holocene 11(5):579–86.Google Scholar
Olsson, I. 1986. A study of errors in 14C dates of peat and sediment. Radiocarbon 28(2A):429–35.Google Scholar
Pancost, RD, van Geel, B, Baas, M, Sinninghe Damsté, JS. 2000. δ13C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits. Geology 28(7):663–6.Google Scholar
Putkinen, A, Juottonen, H, Juutinen, S, Tuittila, ES, Fritze, H, Yrjälä, K. 2009. Archaeal rRNA communities and methane production in deep boreal peat. FEMS Microbial Ecology 70(1):8798.CrossRefGoogle ScholarPubMed
Raghoebarsing, A A, Smolders, AJ, Schmid, MC, Rijpstra, WI, Wolters-Arts, M, Derksen, J, Jetten, MS, Schouten, S, Sinninghe Damsté, JS, Lamers, LP, Roelofs, JG, Op den Camp, HJ, Strous, M. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436(7054):1153–6.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, R, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Ruppel, M, Väliranta, M, Virtanen, A, Korhola, A. 2013. Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in North America and northern Europe. The Holocene 23(11):1596–606.CrossRefGoogle Scholar
Saarinen, T. 1996. Biomass and production of two vascular plants in a boreal mesotrophic fen. Canadian Journal of Botany 74(6):934–8.CrossRefGoogle Scholar
Scott, EM, Cook, GT, Naysmith, P, Bryant, C, O'Donnell, D. 2007. A report on Phase 1 of the 5th International Radiocarbon Intercomparison (VIRI). Radiocarbon 49(2):409–26.Google Scholar
Seppä, H. 1996. Post-glacial dynamics of vegetation and tree-lines in the far north of Fennoscandia. Fennia 174(1):196.Google Scholar
Shore, JS, Bartley, DD, Harkness, DD. 1995. Problems encountered with the 14C dating of peat. Quaternary Science Reviews 14(4):373–83.Google Scholar
Siitonen, S, Väliranta, M, Weckström, J, Juutinen, S, Korhola, A. 2011. Comparison of Cladocera-based water-depth reconstruction against other types of proxy data in Finnish Lapland. Hydrobiologia 676(1):155–72.Google Scholar
Slota, PJ Jr, Jull, AJT, Linick, TW, Toolin, LJ. 1986. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2):303–6.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(2):355–63.CrossRefGoogle Scholar
Tolonen, K, Possnert, G, Jungner, H, Sonninen, E, Alm, J. 1993. High resolution 14C dating of surface peat using the AMS technique. Suo 4–5:271–5.Google Scholar
Törnqvist, TE, de Jong, AFM, Oosterbaan, WA, van der Borg, K. 1992. Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34(3):566–77.Google Scholar
Väliranta, M, Kultti, S, Seppä, H. 2006. Vegetation dynamics during the Younger Dryas-Holocene transition in the extreme northern taiga zone, northeastern European Russia. Boreas 35(2):202–12.Google Scholar
Väliranta, M, Weckström, J, Siitonen, S, Seppä, H, Alkio, J, Juutinen, S, Tuittila, ES. 2011. Holocene aquatic ecosystem change in the boreal vegetation zone of northern Finland. Journal of Paleolimnology 45(3):339–52.Google Scholar
van Bellen, S, Garneau, M, Booth, RK. 2011. Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal Quebec, Canada: impact of climate-driven ecohydrological change. The Holocene 21(8):1217–31.Google Scholar
van der Plicht, J. 2012. Borderline radiocarbon. Netherlands Journal of Geosciences–Geologie en Mijnbouw 91(1/2):251–61.Google Scholar
Weckström, J, Seppä, H, Korhola, A. 2010. Climatic influence on peatland formation and lateral expansion in sub-arctic Fennoscandia. Boreas 39(4):761–9.Google Scholar
Wohlfarth, B, Skog, G, Possnert, G, Holmquist, B. 1998. Pitfalls in the AMS radiocarbon-dating of terrestrial macrofossils. Journal of Quaternary Science 13(2):137–45.Google Scholar