Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T10:26:02.211Z Has data issue: false hasContentIssue false

ALTERNATIVE RADIOCARBON AGE-DEPTH MODEL FROM LAKE BAIKAL SEDIMENT: IMPLICATION FOR PAST HYDROLOGICAL CHANGES FOR LAST GLACIAL TO THE HOLOCENE

Published online by Cambridge University Press:  28 September 2023

Fumiko Watanabe Nara*
Affiliation:
Graduate School of Environmental Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, O 24, Wake, Nomi, Ishikawa 923-1224, Japan Faculty of Liberal Arts and Science, Chukyo University, 101-2 Yagoto Honmachi, Showa, Nagoya, 466-8666, Japan
Takahiro Watanabe
Affiliation:
Tono Geoscience Center, Japan Atomic Energy Agency, Joringi, Izumi-cho, Toki, 509-5102, Japan
Bryan C Lougheed
Affiliation:
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Stephen Obrochta
Affiliation:
Graduate School of International Resource Science, Akita University, Akita, Japan
*
*Corresponding author. Email: narafumi@nagoya-u.jp

Abstract

We present an alternative radiocarbon (14C) age-depth model using IntCal20 to calibrate new accelerator mass spectrometry (AMS) data applied to a Lake Baikal sediment core (VER99G12) in southern Siberia. 14C dating showed that the core extends to 31 ka. To take into account uncertainties in 14C age and sedimentation depth in the core, a new age-depth modeling routine, undatable, was used in this study. Undatable revealed that significant changes in sedimentation rate correspond to global climate events, either warm or cold, which periods are likely close to the timing of the occurrence of the Meltwater pulses (MWP) at 19 and 14 ka, and the Last glacial Maximum (LGM) at 21–20 ka. Since the Selenga River accounts for 50% of the total river inflow to Lake Baikal, we interpret that these changes in sedimentation rate could be signals of significant changes in Selenga River discharge to the lake, which is expected to be affected by global climate change. Based on pollen analysis, it is highly probable that the sudden influx of the Selenga River to Lake Baikal, particularly at 19 ka, was due to the thawing of permafrost water through the Selenga River, which had developed in the region. Total organic carbon content and mean grain size increases concurrent with sedimentation rate, suggesting river inflow increased available nutrients for biological activity. Our results indicate that hydrological changes corresponding to MWP events can be observed in continental areas of the Northern Hemisphere.

Type
Conference Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022.

References

REFERENCES

Antipin, V, Afonina, T, Badalov, O, Bezrukova, E, Bukharov, A, Bychinsky, V, Dmitriev, AA, Dorofeeva, R, Duchkov, A, Esipko, O, et al. 2001. The new bdp-98 600-m drill core from Lake Baikal: a key Late Cenozoic sedimentary section in continental Asia. Quaternary International 80–81:1936.CrossRefGoogle Scholar
Arzhannikov, SG, Ivanov, AV, Arzhannikova, AV, Demonterova, EI, Jansen, JD, Preusser, F, Kamenetsky, VS, Kamenetsky, MB. 2018. Catastrophic events in the quaternary outflow history of Lake Baikal. Earth-Science Reviews 177:76113.CrossRefGoogle Scholar
Bard, E, Hamelin, B, Delanghe-Sabatier, D. 2010. Deglacial meltwater pulse 1b and younger dryas sea levels revisited with boreholes at Tahiti. Science 327(5970):12351237.CrossRefGoogle ScholarPubMed
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6(3):457474.CrossRefGoogle Scholar
Chebykin, EP, Goldberg, EL, Kulikova, NS, Zhuchenko, NA, Stepanova, OG, Malopevnaya, YA. 2007. A method for determination of the isotopic composition of authigenic uranium in baikal bottom sediments. Russian Geology and Geophysics 48(6):468477.CrossRefGoogle Scholar
Clark, PU, McCabe, AM, Mix, AC, Weaver, AJ. 2004. Rapid rise of sea level 19,000 years ago and its global implications. Science 304(5674):11411144.CrossRefGoogle ScholarPubMed
Colman, SM, Jones, GA, Rubin, M, King, JW, Peck, JA, Orem, WH. 1996. AMS radiocarbon analyses from Lake Baikal, Siberia: challenges of dating sediments from a large, oligotrophic lake. Quaternary Science Reviews 15(7):669684.CrossRefGoogle Scholar
Colman, SM, Peck, JA, Karabanov, EB, Carter, SJ, Bradbury, JP, King, JW, Williams, DF. 1995. Continental climate response to orbital forcing from biogenic silica records in Lake Baikal. Nature 378(6559):769771.CrossRefGoogle Scholar
Demory, F, Nowaczyk, NR, Witt, A, Oberhänsli, H. 2005. High-resolution magnetostratigraphy of Late Quaternary sediments from Lake Baikal, Siberia: timing of intracontinental paleoclimatic responses. Global and Planetary Change 46(1):167186.CrossRefGoogle Scholar
Deschamps, P, Durand, N, Bard, E, Hamelin, B, Camoin, G, Thomas, AL, Henderson, GM, Okuno, J, Yokoyama, Y. 2012. Ice-sheet collapse and sea-level rise at the bolling warming 14,600 years ago. Nature 483(7391):559564.CrossRefGoogle ScholarPubMed
Horiuchi, K, Matsuzaki, H, Kobayashi, K, Goldberg, EL, Shibata, Y. 2003. 10Be record and magnetostratigraphy of a miocene section from Lake Baikal: re-examination of the age model and its implication for climatic changes in continental Asia. Geophysical Research Letters 30(12).CrossRefGoogle Scholar
Horiuchi, K, Minoura, K, Hoshino, K, Oda, T, Nakamura, T, Kawai, T. 2000. Palaeoenvironmental history of Lake Baikal during the last 23000 years. Palaeogeography Palaeoclimatology Palaeoecology 157(1–2):95108.CrossRefGoogle Scholar
Ishiwa, T, Yokoyama, Y, Miyairi, Y, Obrochta, S, Sasaki, T, Kitamura, A, Suzuki, A, Ikehara, M, Ikehara, K, Kimoto, K, et al. 2016. Reappraisal of sea-level lowstand during the Last Glacial Maximum observed in the Bonaparte Gulf sediments, northwestern Australia. Quaternary International 397:373379.CrossRefGoogle Scholar
Karabanov, E, Williams, D, Kuzmin, M, Sideleva, V, Khursevich, G, Prokopenko, A, Solotchina, E, Tkachenko, L, Fedenya, S, Kerber, E, et al. 2004. Ecological collapse of Lake Baikal and lake hovsgol ecosystems during the last glacial and consequences for aquatic species diversity. Palaeogeography Palaeoclimatology Palaeoecology 209(1–4):227243.CrossRefGoogle Scholar
Kashiwaya, K, Ochiai, S, Sakai, H, Kawai, T. 2001. Orbit-related long-term climate cycles revealed in a 12-myr continental record from Lake Baikal. Nature 410(6824):7174.CrossRefGoogle Scholar
Katsuta, N, Ikeda, H, Shibata, K, Saito-Kokubu, Y, Murakami, T, Tani, Y, Takano, M, Nakamura, T, Tanaka, A, Naito, S, et al. 2018. Hydrological and climate changes in southeast siberia over the last 33 kyr. Global Planet Change 164:1126.CrossRefGoogle Scholar
Kuzumin, MI, Williams, DF, Kawai, T. 2000. Lake Baikal: a mirror in time and space for understanding global change processes. Tokyo: Elsevier.Google Scholar
Laskar, J, Robutel, P, Joutel, F, Gastineau, M, Correia, ACM, Levrard, B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428:261285.CrossRefGoogle Scholar
Lin, Y, Hibbert, FD, Whitehouse, PL, Woodroffe, SA, Purcell, A, Shennan, I, Bradley, SL. 2021. A reconciled solution of meltwater Pulse 1a sources using sea-level fingerprinting. Nature Communications 12(1):2015.CrossRefGoogle ScholarPubMed
Lougheed, BC. 2022. Orbital, the Box – an Interactive Educational Tool for In-depth Understanding of Astronomical Climate Forcing. Open Quaternary. 8, 10. https://doi.org/10.5334/oq.100 CrossRefGoogle Scholar
Lougheed, BC, Obrochta, SP. 2016. MatCal: open source Bayesian 14C age calibration in MATLAB. Journal of Open Research Software. 4, e42. https://doi.org/10.5334/jors.130 CrossRefGoogle Scholar
Lougheed, BC, Obrochta, SP. 2019. A rapid, deterministic age-depth modeling routine for geological sequences with inherent depth uncertainty. Paleoceanography and Paleoclimatology 34(1):122133.CrossRefGoogle Scholar
Nara, FW, Watanabe, T, Kakegawa, T, Minoura, K, Imai, A, Fagel, N, Horiuchi, K, Nakamura, T, Kawai, T. 2014. Biological nitrate utilization in south Siberian lakes (Baikal and Hovsgol) during the last glacial period: The influence of climate change on primary productivity. Quaternary Science Reviews 90:6979.CrossRefGoogle Scholar
Nara, FW, Watanabe, T, Nakamura, T, Kakegawa, T, Katamura, F, Shichi, K, Takahara, H, Imai, A, Kawai, T. 2010. Radiocarbon and stable carbon isotope ratio data from a 4.7-m-long sediment core of Lake Baikal (southern Siberia, Russia). Radiocarbon 52(3):14491457.CrossRefGoogle Scholar
Obrochta, S, Andrén, T, Fazekas, S, Lougheed, BC, Snowball, I, Yokoyama, Y, Miyairi, Y, Kondo, R, Kotilainen, A, Hyttinen, O. 2017. The undatables: quantifying uncertainty in a highly expanded Late Glacial—Holocene sediment sequence recovered from the deepest Baltic Sea basin—IODP Site M0063. Geochemistry, Geophysics, Geosystems 18:858871.CrossRefGoogle Scholar
Obrochta, SP, Yokoyama, Y, Yoshimoto, M, Yamamoto, S, Miyairi, Y, Nagano, G, Nakamura, A, Tsunematsu, K, Lamair, L, Hubert-Ferrari, A, et al. 2018. Mt. Fuji Holocene eruption history reconstructed from proximal lake sediments and high-density radiocarbon dating. Quaternary Science Reviews 200:395405.CrossRefGoogle Scholar
Ochiai, S, Kashiwaya, K. 2003. Hydro-geomorphological changes and sedimentation processes printed in sediments from Lake Baikal. Long continental records from Lake Baikal. Springer Japan. p. 297312.CrossRefGoogle Scholar
Ochiai, S, Kashiwaya, K. 2005. Climato-hydrological environment inferred from Lake Baikal sediments based on an automatic orbitally tuned age model. Journal of Paleolimnology 33(3):303311.CrossRefGoogle Scholar
Osipov, EY, Khlystov, OM. 2010. Glaciers and meltwater flux to Lake Baikal during the last glacial maximum. Palaeogeography Palaeoclimatology Palaeoecology 294(1–2):415.CrossRefGoogle Scholar
Prokopenko, AA, Hinnov, LA, Williams, DF, Kuzmin, MI. 2006. Orbital forcing of continental climate during the pleistocene: A complete astronomically tuned climatic record from Lake Baikal, se siberia. Quaternary Science Reviews 25(23–24):34313457.CrossRefGoogle Scholar
Prokopenko, AA, Karabanov, EB, Williams, DF, Kuzmin, MI, Khursevich, GK, Gvozdkov, AA. 2001. The detailed record of climatic events during the past 75,000yrs BP from the Lake Baikal drill core bdp-93-2. Quaternary International 80–81:5968.CrossRefGoogle Scholar
Rasmussen, SO, Bigler, M, Blockley, SP, Blunier, T, Buchardt, SL, Clausen, HB, Cvijanovic, I, Dahl-Jensen, D, Johnsen, SJ, Fischer, H, et al. 2014. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized greenland ice-core records: refining and extending the intimate event stratigraphy. Quaternary Science Reviews 106:1428.CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kyr BP). Radiocarbon 62(4):725757.CrossRefGoogle Scholar
Shichi, K, Kawamuro, K, Takahara, H, Hase, Y, Maki, T, Miyoshi, N. 2007. Climate and vegetation changes around Lake Baikal during the last 350,000 years. Palaeogeography Palaeoclimatology Palaeoecology 248(3–4):357375.CrossRefGoogle Scholar
Shichi, K, Takahara, H, Hase, Y, Watanabe, T, Nara, FW, Nakamura, T, Tani, Y, Kawai, T. 2013. Vegetation response in the southern Lake Baikal region to abrupt climate events over the past 33calkyr. Palaeogeography, Palaeoclimatology, Palaeoecology 375(Supplement C):7082.CrossRefGoogle Scholar
Shimaraev, MN, Granin, NG, Zhdanov, AA. 1993. Deep ventilation of Lake Baikal waters due to spring thermal bars. Limnology and Oceanography 38(5):10681072.CrossRefGoogle Scholar
Soma, Y, Tani, Y, Soma, M, Mitake, H, Kurihara, R, Hashomoto, S, Watanabe, T, Nakamura, T. 2006. Sedimentary steryl chlorin esters (sces) and other photosynthetic pigments as indicators of paleolimnological change over the last 28,000 years from the Buguldeika saddle of Lake Baikal. Journal of Paleolimnology 37(2):163175.CrossRefGoogle Scholar
Swann, GEA, Mackay, AW, Vologina, E, Jones, MD, Panizzo, VN, Leng, MJ, Sloane, HJ, Snelling, AM, Sturm, M. 2018. Lake Baikal isotope records of holocene central asian precipitation. Quaternary Science Reviews 189:210222.CrossRefGoogle Scholar
Tani, Y, Nara, F, Soma, Y, Soma, M, Itoh, N, Matsumoto, GI, Tanaka, A, Kawai, T. 2009. Phytoplankton assemblage in the plio-pleistocene record of Lake Baikal as indicated by sedimentary steryl chlorin esters. Quaternary International 205(1):126136.CrossRefGoogle Scholar
Törnqvist, R, Jarsjö, J, Pietroń, J, Bring, A, Rogberg, P, Asokan, SM, Destouni, G. 2014. Evolution of the hydro-climate system in the Lake Baikal basin. Journal of Hydrology 519:19531962.CrossRefGoogle Scholar
Urabe, A, Tateishi, M, Inouchi, Y, Matsuoka, H, Inoue, T, Dmytriev, A, Khlystov, OM. 2004. Lake-level changes during the past 100,000 years at Lake Baikal, southern Siberia. Quaternary Research 62(2):214222.CrossRefGoogle Scholar
Waelbroeck, C, Lougheed, BC, Vazquez Riveiros, N, Missiaen, L, Pedro, J, Dokken, T, Hajdas, I, Wacker, L, Abbott, P, Dumoulin, J-P, et al. 2019. Consistently dated atlantic sediment cores over the last 40 thousand years. Scientific Data 6(1):165.CrossRefGoogle ScholarPubMed
Wang, Y, Cheng, H, Edwards, RL, He, Y, Kong, X, An, Z, Wu, J, Kelly, MJ, Dykoski, CA, Li, X. 2005. The holocene asian monsoon: links to solar changes and North Atlantic climate. Science 308(5723):854857.CrossRefGoogle ScholarPubMed
Wang, YJ, Cheng, H, Edwards, RL, An, ZS, Wu, JY, Shen, CC, Dorale, JA. 2001. A high-resolution absolute-dated late pleistocene monsoon record from hulu cave, china. Science 294(5550):23452348.CrossRefGoogle ScholarPubMed
Watanabe, T, Nakamura, T, Kawai, T. 2007. Radiocarbon dating of sediments from large continental lakes (Lakes Baikal, Hovsgol and Erhel). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259(1):565570.CrossRefGoogle Scholar
Watanabe, T, Nakamura, T, Nara, FW, Kakegawa, T, Nishimura, M, Shimokawara, M, Matsunaka, T, Senda, R, Kawai, T. 2009a. A new age model for the sediment cores from academician ridge (Lake Baikal) based on high-time-resolution AMS 14C data sets over the last 30 kyr: paleoclimatic and environmental implications. Earth and Planetary Science Letters 286(3–4):347354.CrossRefGoogle Scholar
Watanabe, T, Nakamura, T, Watanabe Nara, F, Kakegawa, T, Horiuchi, K, Senda, R, Oda, T, Nishimura, M, Inoue Matsumoto, G, Kawai, T. 2009b. High-time resolution AMS 14C data sets for Lake Baikal and Lake Hovsgol sediment cores: changes in radiocarbon age and sedimentation rates during the transition from the last glacial to the Holocene. Quaternary International 205:1220.CrossRefGoogle Scholar
Webster, JM, Braga, JC, Humblet, M, Potts, DC, Iryu, Y, Yokoyama, Y, Fujita, K, Bourillot, R, Esat, TM, Fallon, S, et al. 2018. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years. Nature Geoscience 11:426432.CrossRefGoogle Scholar
Yokoyama, Y, Esat, TM. 2011. Global climate and sea level enduring variability and rapid fluctuations over the past 150,000 years. Oceanography 24(2):5469.CrossRefGoogle Scholar
Yokoyama, Y, Lambeck, K, De Deckker, P, Johnston, P, Fifield, LK. 2000. Timing of the last glacial maximum from observed sea-level minima. Nature 406(6797):713716.CrossRefGoogle ScholarPubMed
Zhou, W, Liu, T, Wang, H, An, Z, Cheng, P, Zhu, Y, Burr, GS. 2016. Geological record of meltwater events at qinghai lake, china from the past 40 ka. Quaternary Science Reviews 149:279287.CrossRefGoogle Scholar