Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T07:10:04.807Z Has data issue: false hasContentIssue false

Features of 200 kV, 300 ns reflex triode vircator operation for different explosive emission cathodes

Published online by Cambridge University Press:  27 November 2012

Amitava Roy*
Affiliation:
Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
R. Menon
Affiliation:
Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
Vishnu Sharma
Affiliation:
Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
Ankur Patel
Affiliation:
Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
Archana Sharma
Affiliation:
Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
D.P. Chakravarthy
Affiliation:
Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
*
Address correspondence and reprint requests to: Amitava Roy, Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India. E-mail: aroy@barc.gov.in

Abstract

To study the effect of explosive field emission cathodes on high power microwave generation, experiments were conducted on a reflex triode virtual cathode oscillator. Experimental results with cathodes made of graphite, stainless steel nails, and carbon fiber (needle type) are presented. The experiments have been performed at the 1 kJ Marx generator (200 kV, 300 ns, and 9 kA). The experimentally obtained electron beam diode perveance has been compared with the one-dimensional Child-Langmuir law. The cathode plasma expansion velocity has been calculated from the perveance data. It was found that the carbon fiber cathode has the lowest cathode plasma expansion velocity of 1.7 cm/μs. The radiated high power microwave has maximum field strength and pulse duration for the graphite cathode. It was found that the reflex triode virtual cathode oscillator radiates a single microwave frequency with the multiple needle cathodes for a shorter (<200 ns full width at half maximum) voltage pulse duration.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appelgren, P., Akyuz, M., Elfsberg, M., Hurtig, T., Larsson, A., Nyholm, S.E. & Möller, C. (2006). Study of a compact HPM system with a reflex triode and a marx generator. IEEE Trans. Plasma Sci. 34, 17961805.CrossRefGoogle Scholar
Benford, J. (2008). Space Applications of High-Power Microwaves. IEEE Trans. Plasma Sci. 36, 569581.CrossRefGoogle Scholar
Benford, J., Price, D., Sze, H. & Bromley, D. (1987). Interaction of a vircator microwave generator with an enclosing resonant cavity. J. Appl. Phys. 61, 20982100.CrossRefGoogle Scholar
Benford, J., Swegle, J. & Schamiloglu, E. (2007). High Power Microwaves. Boca Raton: Taylor & Francis.CrossRefGoogle Scholar
Biswas, D. & Kumar, R. (2007). Efficiency enhancement of the Axial VIRCATOR. IEEE Trans. Plasma Sci. 35, 369378.CrossRefGoogle Scholar
Biswas, D. (2009). A one-dimensional basic oscillator model of the vircator. Phys. Plasmas 16, 063104.CrossRefGoogle Scholar
Chen, Y., Mankowski, J., Walter, J., Kristiansen, M. & Gale, R. (2007). Cathode and anode optimization in a virtual cathode oscillator. IEEE Trans. Dielectr. Electr. Insulat. 14, 10371044.CrossRefGoogle Scholar
Cohen, L. (1995). Time-Frequency Signal Analysis. New York: Prentice Hall.Google Scholar
Hegeler, F., Partridge, M.D., Schamiloglu, E. & Abdallah, C.T. (2000). Studies of relativistic backward-wave oscillator operation in the cross-excitation regime. IEEE Trans. Plasma Sci. 28, 567575.Google Scholar
Jiang, W. & Kristiansen, M. (2001). Theory of the virtual cathode oscillator. Phys. Plasmas 8, 37813787.CrossRefGoogle Scholar
Jiang, W., Woolverton, K., Dickens, J. & Kristiansen, M. (1999). High power microwave generation by a coaxial virtual cathode oscillator. IEEE Trans. Plasma Sci. 27, 15381542.CrossRefGoogle Scholar
Li, L., Liu, L., Cheng, G., Xu, Q., Wan, H., Chang, L. & Wen, J. (2009 a). The dependence of vircator oscillation mode on cathode material. J. Appl. Phys. 105, 123301.CrossRefGoogle Scholar
Li, L., Liu, L., Wan, H., Zhang, J., Wen, J. & Liu, Y. (2009 b). Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes. Plasma Sources Sci. Technol. 18, 015011.CrossRefGoogle Scholar
Li, L., Men, T., Liu, L. & Wen, J. (2007). Dynamics of virtual cathode oscillation analyzed by impedance changes in high-power diodes. J. Appl. Phys. 102, 123309.CrossRefGoogle Scholar
Liu, L., Li, L.-M., Zhang, X.-P., Wen, L.-C., Wan, H. & Zhang, Y.-Z. (2007). Efficiency enhancement of reflex triode virtual cathode oscillator using the carbon fiber cathode. IEEE Trans. Plasma Sci. 35, 361368.CrossRefGoogle Scholar
Mahaffey, R.A., Sprangle, P., Golden, J. & Kapetanakos, C.A. (1977). High-Power Microwaves from a Nonisochronic Reflecting Electron System. Phys. Rev. Lett. 39, 843846.CrossRefGoogle Scholar
Maron, Y., Sarid, E., Zahavi, O., Perelmutter, L. & Sarfaty, M. (1989). Particle-velocity distribution and expansion of a surface-flashover plasma in the presence of magnetic fields. Phys. Rev. A 39, 58425855.CrossRefGoogle ScholarPubMed
Menon, R., Roy, A., Singh, S.K., Mitra, S., Sharma, V., Kumar, S., Sharma, A., Nagesh, K.V., Mittal, K.C. & Chakravarthy, D.P. (2010). High power microwave generation from coaxial virtual cathode oscillator using graphite and velvet cathodes. J. Appl. Phys. 107, 093301.CrossRefGoogle Scholar
Mesyats, G.A. (2004). Pulsed Power and Electronics. Moscow: Nauka.Google Scholar
Miller, R.B. (1982). An Introduction to the Intense Charged Particle Beam. New York: Plenum.Google Scholar
Parker, R.K., Anderson, E.R. & Duncan, C.V. (1974). Plasma-induced field emission and the characteristics of high-current relativistic electron flow. J. Appl. Phys. 45, 24632479.CrossRefGoogle Scholar
Price, D. & Benford, J.N. (1998). General scaling of pulse shortening in explosive-emission-driven microwave sources. IEEE Trans. Plasma Sci. 26, 256262.CrossRefGoogle Scholar
Pushkarev, A.I. & Sazonov, R.V. (2009). Research of cathode plasma speed in planar diode with explosive emission cathode. IEEE Trans. Plasma Sci. 37, 19011907.CrossRefGoogle Scholar
Roy, A., Menon, R., Mitra, S., Kumar, S., Sharma, V., Nagesh, K.V., Mittal, K.C. & Chakravarthy, D.P. (2009). Plasma expansion and fast gap closure in a high power electron beam diode. Phys. Plasma 16, 053103.CrossRefGoogle Scholar
Roy, A., Patel, A., Menon, R., Sharma, A., Chakravarthy, D.P. & Patil, D.S. (2011). Emission properties of explosive field emission cathodes. Phys. Plasmas 18, 103108.CrossRefGoogle Scholar
Roy, A., Sharma, A., Mitra, S., Menon, R., Sharma, V., Nagesh, K.V. & Chakravarthy, D.P. (2011). Oscillation frequency of a reflex-triode virtual cathode oscillator. IEEE Trans. Electr. Devices 58, 553561.CrossRefGoogle Scholar
Saveliev, Y.M., Sibbett, W. & Parkes, D.M. (2003). On anode effects in explosive emission diodes. J. Appl. Phys. 94, 57765781.CrossRefGoogle Scholar
Sharma, A., Kumar, S., Mitra, S., Sharma, V., Patel, A., Roy, A., Menon, R., Nagesh, K.V. & Chakravarthy, D.P. (2011). Development and characterization of repetitive 1-kj marx-generator-driven reflex triode system for high-power microwave generation. IEEE Trans. Plasma Sci. 39, 12621267.CrossRefGoogle Scholar
Shiffler, D., Cartwright, K.L., Lawrence, K., Ruebush, M., Lacour, M., Golby, K. & Zagar, D. (2003). Experimental and computational estimate of bipolar flow parameters in an explosive field emission cathode. Appl. Phys. Lett. 83, 428430.CrossRefGoogle Scholar
Shiffler, D.A., Luginsland, J.W., Umstattd, R.J., Lacour, M., Golby, K., Haworth, M.D., Ruebush, M., Zagar, D., Gibbs, A. & Spencer, T.A. (2002). Effects of Anode Materials on the Performance of Explosive Field Emission Diodes. IEEE Trans. Plasma Sci. 30, 12321237.CrossRefGoogle Scholar
Sullivan, D.J., Walsh, J.E. & Coutsias, E.A. (1987). “Virtual cathode oscillator (vircator) theory.” In High Power Microwave Sources (Granastein, V. & Alexeff, I. Norwood, Eds.). MA: Artech House, 441.Google Scholar
Thode, L.E. (1987). “Virtual cathode microwave device research: experiment and simulation.” In High Power Microwave Sources (Granastein, V. & Alexeff, I. Norwood, Eds.). MA: Artech House, 508.Google Scholar
Umstattd, R.J. & Luginsland, J.W. (2001). Two-Dimensional Space-Charge-Limited Emission: Beam-Edge Characteristics And Applications. Phys. Rev. Lett. 87, 145002.CrossRefGoogle ScholarPubMed