Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T19:50:29.664Z Has data issue: false hasContentIssue false

On the Lp convergence of sums of independent random variables

Published online by Cambridge University Press:  24 October 2008

Peter Hall
Affiliation:
University of Melbourne†

Abstract

Let {Xnj, 1 ≤ jkn} be independent random variables with zero means and satisfying . Let p ≥ 1. We prove that

if and only if, for all ε > 0,

and we use this result to obtain necessary and sufficient conditions for the Lp convergence of sums of non-negative, independent random variables.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Brown, B. M.Moments of a stopping rule related to the central limit theorem. Ann. Math. Statist. 40 (1969), 12361249.Google Scholar
(2)Brown, B. M.Characteristic functions, moments and the central limit theorem. Ann. Math. Statist. 41 (1970), 658664.Google Scholar
(3)Brown, B. M.Martingale central limit theorems. Ann. Math. Statist. 42 (1971), 5966.Google Scholar
(4)Brown, B. M.A note on convergence of moments. Ann. Math. Statist. 42 (1971), 777779.CrossRefGoogle Scholar
(5)Burkholder, D. L.Distribution function inequalities for martingales. Ann. Probab. 1 (1973), 1942.CrossRefGoogle Scholar
(6)Chatterji, S. D.An Lp convergence theorem. Ann. Math. Statist. 40 (1969), 10681070.Google Scholar
(7)Chow, Y. S.On the Lp convergence for n−1/pSn, 0 < p < 2. Ann. Math. Statist. 42 (1971), 393394.CrossRefGoogle Scholar
(8)Gnedenko, B. V. and Kolmogorov, A. N.Limit distributions for sums of independent random variables. (Cambridge, Mass., Addison-Wesley, 1954.)Google Scholar
(9)Khintchine, A.Ya. Su una legge dei grandi numeri generalizzata. Giorn. Ist. Ital. Attuaci. 7 (1936), 365377.Google Scholar
(10)Levy, P.Theorie de l'addition des variables aléatoires. (Paris, Gauthier Villars, 1937.)Google Scholar
(11)Pyke, R. and Root, D.On the convergence in r-mean of normalized partial sums. Ann. Math. Statist. 39 (1968), 379381.Google Scholar
(12)Zolotarev, V. M.A generalization of the Lindeberg-Feller theorem. Theor. Prob. Appl. 12 (1967), 608618.CrossRefGoogle Scholar