Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-03T21:00:37.247Z Has data issue: false hasContentIssue false

Ultrananocrystalline and Nanocrystalline Diamond Thin Films for MEMS/NEMS Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

There has been a tireless quest by the designers of micro- and nanoelectro mechanical systems (MEMS/NEMS) to find a suitable material alternative to conventional silicon. This is needed to develop robust, reliable, and long-endurance MEMS/NEMS with capabilities for working under demanding conditions, including harsh environments, high stresses, or with contacting and sliding surfaces. Diamond is one of the most promising candidates for this because of its superior physical, chemical, and tribomechanical properties. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) thin films, the two most studied forms of diamond films in the last decade, have distinct growth processes and nanostructures but complementary properties. This article reviews the fundamental and applied science performed to understand key aspects of UNCD and NCD films, including the nucleation and growth, tribomechanical properties, electronic properties, and applied studies on integration with piezoelectric materials and CMOS technology. Several emerging diamond-based MEMS/NEMS applications, including high-frequency resonators, radio frequency MEMS and photonic switches, and the first commercial diamond MEMS product—monolithic diamond atomic force microscopy probes—are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sumant, A.V., Auciello, O., Yuan, H.-C., Ma, Z., Carpick, R.W., Mancini, D.C., Proc. SPIE 7318, 17 (2009).Google Scholar
2.Butler, J.E., Windischmann, H., MRS Bull. 23 (9), 22 (1998).CrossRefGoogle Scholar
3.Prelas, M.A., Popovici, G., Biglow, K.L., Eds. (Marcel Dekker, NY, 1997);Google Scholar
Sussmann, R.S., Ed., Handbook of Industrial Diamonds and Diamond Films (Wiley, Chichester, UK, 2009).Google Scholar
4.Butler, J.E., Sumant, A.V., Chem. Vap. Deposition 14 (7–8), 145 (2008).Google Scholar
5.Das, D., Singh, R.N., Int. Mater. Rev. 52 (1), 29 (2007).CrossRefGoogle Scholar
6.Philip, J., Hess, P., Feygelson, T., Butler, J.E., Chattopadhyay, S., Chen, K.H., Chen, L.C., J. App. Phys. 93 (4), 2164 (2003).CrossRefGoogle Scholar
7.Butler, J.E., personal communication.Google Scholar
8.Butler, J.E., Woodin, R.L., Philos. Trans. R. Soc. London, Ser. A 342 (1664), 209 (1993).Google Scholar
9.Butler, J.E., Cheesman, A., Ashfold, M.N.R., in CVD Diamond for Electronic Devices and Sensors, Sussmann, R.S., Ed. (Wiley, Chichester, UK, 2009), pp. 103124.CrossRefGoogle Scholar
10.Butler, J.E., Mankelevich, Y.A., Cheesman, A., Ma, J., Ashfold, M.N.R., J. Phys.: Condens. Matter 21, 364201 (2009).Google Scholar
11.Jiao, S., Sumant, A.V., Kirk, M.A., Gruen, D.M., Krauss, A.R., Auciello, O., J. Appl. Phys. 90, 118 (2001).CrossRefGoogle Scholar
12.Gruen, D.M., MRS Bull. 23 (9), 32 (1998).CrossRefGoogle Scholar
13.Sternberg, M., Zapol, P., Curtiss, L.A., Phys. Rev. B 68, 205330 (2003).CrossRefGoogle Scholar
14.May, P.W., Allan, N.L., Ashfold, M.N.R., Richley, J.C., Mankelevich, Y.A., J. Phys.: Condens. Matter 21, 364203 (2009).Google Scholar
15.May, P.W., Harvey, J.N., Smith, J.A., Mankelevich, Y.A., J. Appl. Phys. 99 (2006).Google Scholar
16.Xiao, X., Birrell, J., Gerbi, J., Auciello, O., Carlisle, J.A., J. Appl. Phys. 96, 2232 (2004).CrossRefGoogle Scholar
17.Auciello, O., Pacheco, S., Sumant, A.V., Gudeman, C., Sampath, S., Datta, A., Carpick, R.W., Adiga, V.P., Zurcher, P., Ma, Z., Yuan, H.C., Carlisle, J.A., Kabius, B., Hiller, J., IEEE Microwave Mag. 8, 61 (2008).Google Scholar
18.Birrell, J., Carlisle, J.A., Auciello, O., Gruen, D.M., Gibson, J.M., Appl. Phys. Lett. 81 (12), 2235 (2002).CrossRefGoogle Scholar
19.Espinosa, H.D., Prorok, B.C., Peng, B., Kim, K.H., Moldovan, N., Auciello, O., Carlisle, J.A., Gruen, D.M., Mancini, D.C., Exp. Mech. 43, 256 (2003).Google Scholar
20.Adiga, V.P., Sumant, A.V., Suresh, S., Gudeman, C., Auciello, O., Carlisle, J.A., Carpick, R.W., Phys. Rev. B 79, 245403 (2009).CrossRefGoogle Scholar
21.Espinosa, H.D., Peng, B., Prorok, B.C., Moldovan, N., Auciello, O., Carlisle, J.A., Gruen, D.M., Mancini, D.C., J. Appl. Phys. 94, 6076 (2003).CrossRefGoogle Scholar
22.Sumant, A.V., Grierson, D.S., Gerbi, J.E., Birrell, J., Lanke, U.D., Auciello, O., Carlisle, J.A., Carpick, R.W., Adv. Mater. 17, 1039 (2005).CrossRefGoogle Scholar
23.Sumant, A.V., Gilbert, P., Grierson, D.S., Konicek, A.R., Abrecht, M., Butler, J.E., Feygelson, T., Rotter, S.S., Carpick, R.W., Diamond Relat. Mater. 16 (4–7), 718 (2007).Google Scholar
24.Sumant, A.V., Grierson, D.S., Gerbi, J.E., Carlisle, J., Auciello, O., Carpick, R.W., Phys. Rev. B 76, 235429 (2007).Google Scholar
25.Konicek, A.R., Grierson, D.S., Gilbert, P.U.P.A., Sawyer, W.G., Sumant, A.V., Carpick, R.W., Phys. Rev. Lett. 100, 235502/1–4 (2008).CrossRefGoogle Scholar
26.Erdemir, A., Bindal, C., Fenske, G.R., Zuiker, C., Krauss, A.R., Gruen, D.M., Diamond Relat. Mater. 5, 923 (1996).CrossRefGoogle Scholar
27.Erdemir, A., Fenske, G.R., Krauss, A.R., Gruen, D.M., McCauley, T., Csencsits, R.T., Surf. Coat. Technol. 565, 120 (1999).Google Scholar
28.Grierson, D.S., Sumant, A.V., Konicek, A.R., Abrecht, M., Birrell, J., Auciello, O., Carlisle, J.A., Scharf, T.W., Dugger, M.T., Gilbert, P.U.P.A., Carpick, R.W., J. Vac. Sci. Technol., B 25, 1700 (2007).CrossRefGoogle Scholar
29.Sekaric, L., Parpia, J.M., Craighead, H.G., Feygelson, T., Houston, B.H., Butler, J.E., Appl. Phys. Lett. 81 (23), 4455 (2002).CrossRefGoogle Scholar
30.Baldwin, J.W., Zalalutdinov, M., Feygelson, T., Butler, J.E., Houston, B.H., J. Vac. Sci. Technol., B 24 (1), 50 (2006).CrossRefGoogle Scholar
31.Jing, W., Butler, J.E., Hsu, D.S.Y., Nguyen, C.T., Micro Electro Mechanical Systems, 2002, The 15th IEEE International Conference (2002), pp. 657660.Google Scholar
32.Kusterer, J., Kohn, E., CVD Diamond for Electronic Devices and Sensors, Sussmann, R.S., Ed. (Wiley, Chichester, UK, 2009), pp. 469545.Google Scholar
33.Krauss, A.R., Auciello, O., Gruen, D.M., Jayatissa, A., Sumant, A.V., Tucek, J., Mancini, D.C., Moldovan, N., Erdemir, A., Ersoy, D., Gardos, M.N., Busmann, H.G., Meyer, E.M., Ding, M.Q., Diamond Relat. Mater. 10, 1952 (2001).Google Scholar
34.Rotter, S., Diamond Films Technol. 6 (6), 331 (1996).Google Scholar
35.Naguib, N.N., Elam, J.W., Birrell, J., Wang, J., Grierson, D.S., Kabius, B., Hiller, J.M., Sumant, A.V., Carpick, R.W., Auciello, O., Carlisle, J.A., Chem. Phys. Lett. 430, 345 (2006).Google Scholar
36.Jing, W., Butler, J.E., Feygelson, T., Nguyen, C.T., Micro Electro Mechanical Systems 17th IEEE International Conference on MEMS, 641 (2004).Google Scholar
37.Wang, C.F., Choi, Y.S., Lee, J.C., Hu, E.L., Yang, J., Butler, J.E., Appl. Phys. Lett. 90 (8) (2007).Google Scholar
38.Wang, C.F., Hanson, R., Awschalom, D.D., Hu, E.L., Feygelson, T., Yang, J., Butler, J.E., Appl. Phys. Lett. 91, 20112 (2007).Google Scholar
39.Hiscocks, M.P., Kaalund, C.J., Ladouceur, F., Gibson, B.C., Trpkovski, S., Huntington, S.T., Simpson, D., Ampem-Lassen, E., Hossain, F., Hollenberg, L., Prawer, S., Butler, J.E., Processing of Diamond: Towards All-Diamond Integrated Optics. COIN-ACOFT 2007—International Conference on Optical Internet held jointly with the 32nd Australian Conference on Optical Fiber Technology (2007), pp. 296298.Google Scholar
40.Wang, C.F., Hu, E.L., Yang, J., Butler, J.E., J. Vac. Sci. Technol. B 25 (3), 730 (2007).CrossRefGoogle Scholar
41.Hiscocks, M.P., Ganesan, K., Gibson, B.C., Huntington, S.T., Ladouceur, F., Prawer, S., Optics Express 16 (24), 19512 (2008).Google Scholar
42.Polla, D., MRS Bull. 21 (6) (1996).Google Scholar
43.Muralt, P., Int. J. Comput. Eng. Sci. 4 (2), 163 (2003).Google Scholar
44.Sudarsan, S., Hiller, J., Kabius, B., Auciello, O., Appl. Phys. Lett. 90, 134101 (2007).Google Scholar
45.Fan, W., Saha, S., Carlisle, J.A., Auciello, O., Chang, R.P.H., Ramesh, R., Appl. Phys. Lett. 82 (9), 1452 (2003).CrossRefGoogle Scholar
46.Auciello, O., Srinivasan, S., Hiller, J., Sumant, A.V., Kabius, B., Proc. SPIE 7318, 18 (2009).Google Scholar
47.Davidson, J.L., Ramesham, R., Ellis, C., J. Electrochem. Soc. 137 (10), 3206 (1990).CrossRefGoogle Scholar
48.Baldwin, J.W., Zalalutdinov, M.K., Feygelson, T., Pate, B.B., Butler, J.E., Houston, B.H., Diamond Relat. Mater. 15 (11–12), 2061 (2006).Google Scholar
49.Ekinci, K.L., Roukes, M.L., Rev. Sci. Instrum. 76 (6) (2005).CrossRefGoogle Scholar
50.Hovis, J.S., Coulter, S.K., Hamers, R.J., D'Evelyn, M.P., Russell, J.N., Butler, J.E., J. Am. Chem. Soc. 122 (4), 732 (2000).CrossRefGoogle Scholar
51.Strother, T., Knickerbocker, T., Russell, J.N., Butler, J.E., Smith, L.M., Hamers, R.J., Langmuir 18 (4), 968 (2002).CrossRefGoogle Scholar
52.Yang, W.S., Auciello, O., Butler, J.E., Cai, W., Carlisle, J.A., Gerbi, J., Gruen, D.M., Knickerbocker, T., Lasseter, T.L., Russell, J.N., Smith, L.M., Hamers, R.J., Nat. Mater. 1 (4), 253 (2002).CrossRefGoogle Scholar
53.Balachandran, S., Hoff, D., Kumar, A., Weller, T., IEEE MTT-S Int. Microwave Symp. Dig. 1657 (2009).Google Scholar
54.Goldsmith, C., Sumant, A., Auciello, O., Carlisle, J., Zeng, H., Hwang, J.C.M., Palego, C., et al. IEEE Int. Microwave Symp. Dig. in press (2010).Google Scholar
55.Kim, K.-H., Moldovan, N., Ke, C., Espinosa, H.D., Xiao, X., Carlisle, J.A., Auciello, O., Small, 1 (8–9), 866 (2005).CrossRefGoogle Scholar
57.Liu, J., Grierson, D.S., Moldovan, N., Notbohm, J., Li, S., Jaroenapibal, P., O'Connor, S.D., et al. Small, in press (2010).Google Scholar
58.Auciello, O., U.S. patent 7, 602, 105 (October 13, 2009).Google Scholar
60.Gao, G., Cannara, R.J., Carpick, R.W., Harrison, J.A., Langmuir, 23 (10), 5394 (2007).Google Scholar