Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T16:54:06.240Z Has data issue: false hasContentIssue false

Laser Direct-Write Techniques for Printing of Complex Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article reviews recent developments in laser direct-write addition (LDW+) processes for printing complex materials. Various applications, ranging from small-scale energy storage and generation devices to tissue engineering, require the ability to deposit precise patterns of multicomponent and multiphase materials without degrading desirable properties such as porosity, homogeneity, or biological activity. Structurally complex inorganic materials for the successful fabrication of alkaline and lithium-based microbatteries, micro-ultracapacitors, and dye-sensitized micro solar cells are shown on various low-processing-temperature and flexible substrates using LDW+. In particular, the ability to deposit thick layers while maintaining pattern integrity allows devices produced in this manner to exhibit higher energy densities per unit area than can be achieved by traditional thin-film techniques. We then focus on more complex systems of living and biologically active materials. Patterns of biomaterials such as proteins, DNA, and even living cells can be printed using LDW+ with high spatial and volumetric resolution on the order of a picoliter or less, without compromising the viability of these delicate structures. These results provide for highly selective sensor arrays or cell seeding for tissue engineering. Finally, we review recent work on LDW+ of entire semiconductor circuits, showing the broad range of applications this technique enables.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bohandy, J., Kim, B.F., and Adrian, F.J., J. Appl. Phys. 60 (1986) p. 1538.CrossRefGoogle Scholar
2.Adrian, F.J., Bohandy, J., Kim, B.F., Jette, A.N., and Thompson, P., J. Vac. Sci. Technol. B 5 (1987) p. 1490.CrossRefGoogle Scholar
3.Bohandy, J., Kim, B.F., Adrian, F.J., and Jette, A.N., J. Appl. Phys. 63 (1988) p. 1158.CrossRefGoogle Scholar
4.Schultze, V. and Wagner, M., Appl. Surf. Sci. 52 (1991) p. 303.CrossRefGoogle Scholar
5.Tóth, Z., Szorenyi, T., and Tóth, A.L., Appl. Surf. Sci. 69 (1993) p. 317.CrossRefGoogle Scholar
6.Kántor, Z., Tóth, Z., Szorenyi, T., and Tóth, A.L., Appl. Phys. Lett. 64 (1994) p. 3506.CrossRefGoogle Scholar
7.Zergioti, I., Mailis, S., Vainos, N.A., Papakonstantinou, P., Kalpouzos, C., Grigoropoulos, C.P., and Fotakis, C., Appl. Phys. A 66 (1998) p. 579.CrossRefGoogle Scholar
8.Willis, D.A. and Grosu, V., Appl. Phys. Lett. 86 244103 (2005).CrossRefGoogle Scholar
9.Greer, J.A. and Parker, T.E., Proc. SPIE 998 (1988) p. 113.CrossRefGoogle Scholar
10.Zergioti, I., Malilis, S., Vainos, N.A., Fotakis, C., Chen, S., and Grigoropoulos, C.P., Appl. Surf. Sci. 127– 129 (1998) p. 601.CrossRefGoogle Scholar
11.Fogarassy, E., Fuchs, C., Kerherve, F., Hauchecorne, G., and Perriere, J., J. Appl. Phys. 66 (1989) p. 457.CrossRefGoogle Scholar
12.Tolbert, W.A., Lee, I.-Y.S., Doxtader, M.M., Ellis, E.W., and Dlott, D.D., J. Imaging. Sci. Tech. 37 (1993) p. 411.Google Scholar
13.Chrisey, D.B., Piqué, A., McGill, R.A., Horowitz, J.S., Ringeisen, B.R., Bubb, D.M., and Wu, P.K., Chem. Rev. 103 (2003) p. 553.CrossRefGoogle Scholar
14.Wu, P.K., Ringeisen, B.R., Krizman, D.B., Frondoza, C.G., Brooks, M., Bubb, D.M., Auyueng, R.C.Y., Piqué, A., Spargo, B., McGill, R.A., and Chrisey, D.B., Rev. Sci. Inst. 74 (2003) p. 2546.CrossRefGoogle Scholar
15.Pimenov, S.M., Shafeev, G.A., Smolin, A.A., Konov, V.I., and Vodolaga, B.K., Appl. Surf. Sci. 86 (1995) p. 208.CrossRefGoogle Scholar
16.Piqué, A., Chrisey, D.B., Auyeung, R.C.Y., Fitz-Gerald, J., Wu, H.D., McGill, R.A., Lakeou, S., Wu, P.K., Nguyen, V., and Duignan, M., Appl. Phys. A 69 (1999) p. 279.Google Scholar
17.Piqué, A., Chrisey, A.D.B., Fitz-Gerald, J.M., McGill, R.A., Auyeung, R.C.Y., Wu, H.D., Lakeou, S., Nguyen, V., Chung, R., and Duignan, M., J. Mater. Res. 15 (2000) p. 1872.CrossRefGoogle Scholar
18.Chrisey, D.B., Piqué, A., Fitz-Gerald, J., Auyeung, R.C.Y., McGill, R.A., Wu, H.D., and Duignan, M., Appl. Surf. Sci. 154– 155 (2000) p. 593.CrossRefGoogle Scholar
19.Piqué, A., Fitz-Gerald, J., Chrisey, D.B., Auyeung, R.C.Y., Wu, H.D., Lakeou, S., and McGill, R.A., Proc. SPIE 3922 (2000) p. 105.CrossRefGoogle Scholar
20.Young, D., Auyeung, R.C.Y., Piqué, A., Chrisey, D.B., and Dlott, D.D., Appl. Phys. Lett. 78 (2001) p. 3169.CrossRefGoogle Scholar
21.Arnold, C.B., Pratap, B., Piqué, A., Geltmacher, A.B., and Thomas, J.P., Proc. SPIE 5339 (2004) p. 298.CrossRefGoogle Scholar
22.Auyeung, R.C.Y., Nurnberger, M.W., Wentland, D.J., Piqué, A., Arnold, C.B., Abbott, A.R., and Schuette, L.C., Proc. SPIE 5339 (2004) p. 292.CrossRefGoogle Scholar
23.Arnold, C.B., Wartena, R.C., Pratap, B., Swider-Lyons, K.E., and Piqué, A., MRS Proc. 689 (2002) p. 275.Google Scholar
24.Lewis, B.R., Kinzel, E.C., Laurendeau, N.M., Lucht, R.P., and Xu, X., J. Appl. Phys. 100 033107 (2006).CrossRefGoogle Scholar
25.Arnold, C.B., Wartena, R.C., Swider-Lyons, K.E., and Piqué, A., J. Electrochem. Soc. 150 (2003) p. A571.CrossRefGoogle Scholar
26.Arnold, C.B., Sutto, T., Kim, H., and Piqué, A., Laser Focus World 40 (2004) p. 9.Google Scholar
27.Kim, H., Kushto, G., Arnold, C.B., Kafafi, Z.H., and Piqué, A., Appl. Phys. Lett. 85 (2004) p. 464.CrossRefGoogle Scholar
28.Linden, D. and Reddy, T.B., eds. Handbook of Batteries, 3rd ed. (McGraw-Hill, New York, 2001).Google Scholar
29.Arnold, C.B., Piqué, A., Auyeung, R., and Nurnburger, M., “Laser-based technique for producing and embedding electrochemical cells and electronic components directly into circuit board materials,” U.S. Patent 6,986,199 (January 17, 2006).Google Scholar
30.McKeown, D.A., Hagans, P.L., Carette, L.P.L., Russell, A.E., Swider, K.E., and Rolison, D.R., J. Chem. Phys. B 103 (1999) p. 4825.CrossRefGoogle Scholar
31.Piqué, A., Arnold, C.B., Kim, H., Ollinger, M., and Sutto, T.E., Appl. Phys. A 79 (2004) p. 783.CrossRefGoogle Scholar
32.Arnold, C.B., Kim, H., and Piqué, A., Appl. Phys. A 79 (2004) p. 417.CrossRefGoogle Scholar
33.Wartena, R.C., Curtright, A.E., Arnold, C.B., Piqué, A., and Swider-Lyons, K.E., J. Power Sources 126 (2004) p. 193.CrossRefGoogle Scholar
34.Ollinger, M., Kim, H., Sutto, T.E., Martin, F., and Piqué, A., J. Laser Micro. Nanofab. 1 (2006) p. 102.Google Scholar
35.Sutto, T.E., Ollinger, M., Kim, H., Arnold, C.B., and Piqué, A., Electrochem. Solid-State Lett. 9 (2006) p. A69.CrossRefGoogle Scholar
36.Colina, M., Duocastella, M., Fernández-Pradas, J.M., Serra, P., and Morenza, J.L., J. Appl. Phys. 99 084909 (2006).CrossRefGoogle Scholar
37.Odde, D.J. and Renn, M.J., Biotechnol. Bioeng. 67 (2000) p. 312.3.0.CO;2-F>CrossRefGoogle Scholar
38.Barron, J.A., Wu, P., Ladouceur, H., and Ringeisen, B.R., Biomed. Microdevices 6 (2004) p. 139.CrossRefGoogle Scholar
39.Hopp, B., Smausz, T., Kresz, N., Barna, N., Bor, Z., Kolozsvári, L., Chrisey, D.B., Szabó, A., and Nógrádi, A., Tissue Eng. 11 (2005) p. 1181.CrossRefGoogle Scholar
40.Doraiswamy, A., Narayan, R.J., Lippert, T., Urech, L., Wokaun, A., Nagel, M., Hopp, B., Dinescu, M., Modi, R., Auyeung, R.C.Y., and Chrisey, D.B., Appl. Surf. Sci. 252 (2006) p. 4743.CrossRefGoogle Scholar
41.Ringeisen, B.R., Wu, P.K., Kim, H., Piqué, A., Auyeung, R.Y.C., Young, H.D., and Chrisey, D.B., Biotechnol. Progr. 18 (2002) p. 1126.CrossRefGoogle Scholar
42.Serra, P., Fernández-Pradas, J.M., Berthet, F.X., Colina, M., Elvira, J., and Morenza, J.L., Appl. Phys. A 79 (2004) p. 949.CrossRefGoogle Scholar
43.Barron, J.A., Young, H.D., Dlott, D.D., Darfler, M.M., Krizman, D.B., and Ringeisen, B.R., Proteomics 5 (2005) p. 4138.CrossRefGoogle Scholar
44.Fernández-Pradas, J.M., Colina, M., Serra, P., Domínguez, J., and Morenza, J.L., Thin Solid Films 453– 454 (2004) p. 27.CrossRefGoogle Scholar
45.Ringeisen, B.R., Chrisey, D.B., Piqué, A., Young, H.D., Modi, R., Bucaro, M., Jones-Meehan, J., and Spargo, B.J., Biomaterials 23 (2002) p. 161.CrossRefGoogle Scholar
46.Barron, J.A., Krizman, D.B., and Ringeisen, B.R., Ann. Biomed. Eng. 33 (2005) p. 121.CrossRefGoogle Scholar
47. Thanks to Weiss, R. and Adrianantoandro, E. from Princeton University for providing E. coli bacteria and fluorescent imaging of patterns.Google Scholar
48.Serra, P., Colina, M., Fernández-Pradas, J.M., Sevilla, L., and Morenza, J.L., Appl. Phys. Lett. 85 (2004) p. 1639.CrossRefGoogle Scholar
49.Colina, M., Serra, P., Fernández-Pradas, J.M., Sevilla, L., and Morenza, J.L., Biosens. Bioelectron. 20 (2005) p. 1638.CrossRefGoogle Scholar
50.Holmes, A.S. and Saidam, S.M., J. Microelectromech. Sys. 7 (1998) p. 416.CrossRefGoogle Scholar
51.Holmes, A.S., Proc. SPIE 4426 (2002) p. 203.CrossRefGoogle Scholar
52.Piqué, A., Pratap, B., Mathews, S.A., Karns, B.J., Auyeung, R.C., Kasser, M., Ollinger, M., Kim, H., Lakeou, S., and Arnold, C.B., Proc. SPIE 5713 (2005) p. 223.CrossRefGoogle Scholar
53.Piqué, A., Mathews, S.A., Auyeung, R.C., Ollinger, M., Kim, H., Pratap, B., Arnold, C.B., and Sutto, T.E., Proc. SPIE 5662 (2004) p. 564.CrossRefGoogle Scholar
54.Piqué, A., Mathews, S.A., Pratap, B., Auyeung, R.C.Y., Karns, B.J., and Lakeou, S., J. Microelectron. Eng. 83 (2006) p. 2527.CrossRefGoogle Scholar