Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-13T00:01:52.843Z Has data issue: false hasContentIssue false

The Materials Science of Protein Aggregation

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Numerous human diseases are associated with conformational change and aggregation of proteins, including Alzheimer's, Parkinson's, prion diseases (such as mad cow disease), familial amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease), Huntington's, and type II (mature onset) diabetes. In many cases, it has been demonstrated that conformational change and aggregation can occur outside living cells and complex biochemical networks. Hence, approaches from materials and physical science have enhanced our understanding of the role of protein aggregation in these diseases at the molecular and nanoscale levels. In this article, we will review what is known about these protein structures from the perspective of materials science, focusing on the details of emergent oligomeric and nanotube-like structures, their interactions with model lipid bilayers, how the structures relate to observed biological phenomena, and how protein aggregation and amyloid formation can be employed for the good in biology and materials science.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zimm, B.H. and Bragg, J.K., J. Chem. Phys. 31 (1958) p. 526.CrossRefGoogle Scholar
2.Lifson, S. and Roig, A.J., J. Chem. Phys. 34 (1961) p. 1963.CrossRefGoogle Scholar
3.Pauling, L., Corey, R.B., and Branson, H.R., Proc. Natl. Acad. Sci. USA 37 (1951) p. 205.CrossRefGoogle Scholar
4.Wolynes, P.G., Onuchic, J.N., and Thirumalai, D., Science 267 (1995) p. 1619; J.N. Onuchic and P.G. Wolynes, Curr. Opin. Struct. Biol. 14 (2004) p. 70.CrossRefGoogle Scholar
5.Stefani, M. and Dobson, C.M., J. Mol. Med. 81 (2003) p. 678.CrossRefGoogle Scholar
6.Lee, P.S. and Lee, K.H., Biotech. Bioeng. 89 (2004) p. 195.CrossRefGoogle Scholar
7.Bear, J.E., Krause, M., and Gertler, F.B., Curr. Opin. Cell. Biol. 13 (2001) p. 158; S. Inouye, J. Struct. Biol. 118 (1997) p. 87.CrossRefGoogle Scholar
8.Clark, P.L., Trends Biochem. Sci. 29 (2004) p. 527.CrossRefGoogle Scholar
9.Prusiner, S.B., Safar, J., and DeArmond, S.J., in Prion Biology and Diseases (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2004) p. 143.Google Scholar
10.Legname, G., Baskakov, I.V., Nguyen, H.-O.B., Riesner, D., Cohen, F.E., DeArmond, S.J., Prusiner, S.B., Science 306 (2004) p. 673.CrossRefGoogle Scholar
11.Penn, R.L., J. Phys. Chem. B 108 (2004) p. 12707.CrossRefGoogle Scholar
12.George-Hyslop, P.H. St., Sci. Am. 283 (2000) p. 76.CrossRefGoogle Scholar
13. All plaque/inclusion images are from the laboratory of M. Feany, http://feanylab.bwh.harvard.edu/link2/ (accessed April 2005).Google Scholar
14.Caughey, B. and Lansbury, P.T. Jr., Annu. Rev. Neurosci. 26 (2003) p. 267.CrossRefGoogle Scholar
15.deArmond, S. J., Ironside, J.W., Bouzamondo-Bernstein, E., Peretz, D., and Fraser, J.R., in Prion Biology and Diseases (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2004) p. 777.Google Scholar
16.Jenkins, J. and Pickersgill, R., Prog. Biophys. Mol. Biol. 77 (2001) p. 111.CrossRefGoogle Scholar
17.Govaerts, C., Wille, H., Prusiner, S.B., and Cohen, F.E., Proc. Nat. Acad. Sci. USA 101 (2004) p. 8342.CrossRefGoogle Scholar
18.Kishimoto, A., Hasegawa, K., Suzuki, H., Taguchi, H., Namba, K., and Yoshida, M., Biochem. Biophys. Res. Commun. 315 (2004) p. 739.CrossRefGoogle Scholar
19.Guo, J.-T., Wetzel, R., and Xu, Y., Proteins: Struct. Funct. Bioinformatics 57 (2004) p. 357.CrossRefGoogle Scholar
20.Perutz, M.F., Finch, J.T., Berriman, J., and Lesk, A., Proc. Natl. Acad. Sci. USA 99 (2002) p. 5591; R. Wetzel, Structure 10 (2002) p. 1031.CrossRefGoogle Scholar
21.Pye, V.E., Tingey, A.P., Robson, R.L., and Moody, P.C.E., J. Biol. Chem. 279 (2004) p. 40729.CrossRefGoogle Scholar
22.Kisker, C., Schindelin, H., Alber, B.E., Ferry, J.G., and Rees, D.C., EMBO J. 15 (1996) p. 2323.CrossRefGoogle Scholar
23.Zoghbi, H.Y. and Orr, H.T., Annu. Rev. Neurosci. 23 (2000) p. 217.CrossRefGoogle Scholar
24.Lashuel, H.A., Hartley, D.M., Petre, B.M., Wall, J.S., Simon, M.N., Walz, T., and Lansbury, P.T., J. Mol. Biol. 332 (2003) p. 795.CrossRefGoogle Scholar
25.Lashuel, H.A., Petre, B.M., J.Wall, Simon, M., Nowak, R.J., Walz, T., Lansbury, P.T., J. Mol. Biol. 322 (2002) p. 1089.CrossRefGoogle Scholar
26.Parbhu, A., Lin, H., Thimm, J., and Lal, R., Peptides 23 (2002) p. 1265; A. Quist, I. Doudevski, H. Lin, R. Azimova, D. Ng, B. Frangione, B. Kagan, J. Ghiso, and R. Lal, et al., preprint submitted to Nat. Struct. Biol. (2005).CrossRefGoogle Scholar
27.Prusiner, S.B., Scott, M.R., DeArmond, S.J., and Carlson, G., in Prion Biology and Diseases (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2004) p. 187.Google Scholar
28.Scott, M., Peretz, D., Ridley, R.M., Baker, H.F., DeArmond, S.J., and Prusiner, S.B.., in Prion Biology and Diseases, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2004) p. 435.Google Scholar
29.Bennett, M.J., Schlunegger, M.P., and Eisenberg, D., Protein Sci. 4 (1995) p. 2455; M.P. Schlunegger, M.J. Bennett, and D. Eisenberg, Adv. Protein Chem. 50 (1997) p. 61; Y. Liu, G. Gotte, M. Libonatti, and D. Eisenberg, Nat. Struct. Biol. 8 (2001) p. 211.CrossRefGoogle Scholar
30.Yang, S.C., Cho, S.S., Levy, Y., Cheung, M.S., Levine, H., Wolynes, P.G., Onuchic, J.N., Proc. Natl. Acad. Sci. USA 101 (2004) p. 13786.CrossRefGoogle Scholar
31.Cohen, F.E. and Prusiner, S.B., Annu. Rev. Biochem. 67 (1998) p. 793.CrossRefGoogle Scholar
32.Serio, T.R., Cashikar, A.G., Kowal, A.S., Sawicki, G.J., Moslehi, J.J., Serpell, L., Arnsdorf, M.F., and Lindquist, S.L., Science 289 (2000) p. 1317.CrossRefGoogle Scholar
33.Chen, S., Ferrone, F.A., and Wetzel, R., Proc. Natl. Acad. Sci. USA 99 (2002) p. 11884.CrossRefGoogle Scholar
34.Masel, J., Jansen, V.A.A., and Nowak, M.A., Biophys. Chem. 77 (1999) p. 139.CrossRefGoogle Scholar
35.Chien, P., Weissman, J.S., and DePace, A.H., Annu. Rev. Biochem. 73 (2004) p. 617.CrossRefGoogle Scholar
36.Collins, S.R., Douglass, A., Vale, R.D., and Weissman, J.S., PLoS Biol. 2 (2004) p. 1582.CrossRefGoogle Scholar
37.Slepoy, A., Singh, R.R.P., Pazmandi, F., Kulkarni, R.V., and Cox, D.L., Phys. Rev. Lett. 87 058101(2001).CrossRefGoogle Scholar
38.Will, R.G., Alpers, M.P., Dormont, D., and Schonberger, L.B., in Prion Biology and Diseases (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2004) p. 629.Google Scholar
39.Arispe, N., Pollard, H. B., and Rojas, E., Proc. Natl. Acad. Sci. USA 90 (1993) p. 10573; N. Arispe, H.B. Pollard, and E. Rojas, Mol. Cellu. Biochem. 140 (1994) p. 119; S.R. Durell et al., Biophys. J. 67 (1994) p. 2137.CrossRefGoogle Scholar
40.Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., and Selkoe, D.J., Nature 416 (2002) p. 535.CrossRefGoogle Scholar
41.Mobley, D.L., Cox, D.L., Singh, R.R.P., Maddox, M.W., and Longo, M.L., Biophys. J. 86 (2004) p. 3585.CrossRefGoogle Scholar
42.True, H.L., Berlin, I., and Lindquist, S.L., Nature 431 (2004) p. 184.CrossRefGoogle Scholar
43.Dicko, C., Vollrath, F., and Kenney, J.M., Biomacromolecules 5 (2004) p. 704.CrossRefGoogle Scholar
44.Hamodrakas, S.J., Hoenger, A., and Iconomidou, V.A., J. Struct. Biol. 145 (2004) p. 226.CrossRefGoogle Scholar
45.Si, K., Lindquist, S., and Kandel, E.R., Cell 115 (2004) p. 879.CrossRefGoogle Scholar
46.Scheibel, T., Parthasarathy, R., Sawicki, G., Lin, X.M., Jaeger, H., and Lindquist, S.L., Proc. Natl. Acad. Sci. USA 100 (2003) p. 4527.CrossRefGoogle Scholar
47.Reches, M. and Gazit, E., Science 300 (2003) p. 625.CrossRefGoogle Scholar
48.MacPhee, C.E. and Woolfson, D.N., Curr. Opin. Solid State Mater. Sci. 8 (2004) p. 141.CrossRefGoogle Scholar
49.Lashuel, H.A., LaBrenz, S.R., Woo, L., Serpell, L.C., Kelly, J.W., J. Am. Chem. Soc. 122 (2000) p. 5262.CrossRefGoogle Scholar
50.Waterhouse, S.H. and Gerrard, J.A., Aust. J. Chem. 57 (2004) p. 519.CrossRefGoogle Scholar
51.Gao, S., Hendrie, H.C., Hall, K.S., and Hui, S., Arch. Gen. Psychiatry 55 (1998) p. 809.CrossRefGoogle Scholar
52.Conley, S.C. and Kirchner, J.T., Postgrad. Med. Online 106 (1) (1999), http://www.postgradmed.com/issues/1999/07_99/conley.htm (accessed April 2005).CrossRefGoogle Scholar
53.Strong, M.J., Hudson, A.J., and Alvord, W.G., Can. J. Neurol. Sci. 18 (1991) p. 45.CrossRefGoogle Scholar
54.Votey, S.R. and Peters, A.L., “Diabetes Mellitus, Type II—A Review,” http://www.emedicine.com/emerg/topic134.htm (accessed April 2005).Google Scholar
55.Falk, R.H., Comenzo, R.L., and Skinner, M., New Eng. J. Med. 337 (1997) p. 898.CrossRefGoogle Scholar
56.Jimenez, J.L., Guijarro, J.I., Orlova, E., Zurdo, J., Dobson, C.M., Sunde, M., Saibil, H.R., EMBO J. 18 (1999) p. 815.CrossRefGoogle Scholar
57.Ray, S.S., Nowak, R.J., Strokovich, K., Brown, R.H., Walz, T., and Lansbury, P.T., Biochem. U.S. 43 (2004) p. 4899.CrossRefGoogle Scholar