Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-31T12:11:13.342Z Has data issue: false hasContentIssue false

Diamond electrodes: Diversity and maturity

Published online by Cambridge University Press:  12 June 2014

Yasuaki Einaga
Affiliation:
Department of Chemistry, Keio University, Japan; einaga@chem.keio.ac.jp
John S. Foord
Affiliation:
Department of Chemistry, Chemistry Research Laboratory, Oxford University, UK; john.foord@chem.ox.ac.uk
Greg M. Swain
Affiliation:
Department of Chemistry, Michigan State University, USA; swain@chemistry.msu.edu
Get access

Abstract

Boron-doped diamond electrodes have attracted increasing interest from researchers due to their outstanding properties for electroanalysis and other electrochemical applications. Material quality and availability have come a long way since the initial reports on the basic electrochemical properties back in the late 1980s and early 1990s. In this review, we highlight how diamond electrochemistry has diversified and matured in recent years in terms of the understanding of structure-property relationships and the development of new applications of materials in electroanalytical chemistry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pleskov, Y.V., Sakharova, A.Y., Krotova, M.D., Bouillov, L.L., Spitsyn, B.V., J. Electroanal. Chem. 228, 19 (1987).CrossRefGoogle Scholar
Swain, G.M., Ramesham, R., Anal. Chem. 65, 345 (1993).CrossRefGoogle Scholar
Tenne, R., Patel, K., Hashimoto, K., Fujishima, A., J. Electroanal. Chem. 347, 409 (1993).Google Scholar
Carey, J.J., Christ, J.C.S., Lowery, S.N., US Patent 5,399,246 (1995).Google Scholar
Martin, H.B., Argoitia, A., Landau, U., Anderson, A.B., Angus, J.C., J. Electrochem. Soc. 143, L133 (1996).Google Scholar
Swain, G.M., in Electroanalytical Chemistry, Bard, A.J., Rubinstein, I., Eds. (Marcel Dekker, NY, 2004), vol. 22, pp. 182277.Google Scholar
Fujishima, A., Einaga, Y., Rao, T.N., Tryk, D.A., Eds., Diamond Electrochemistry (BKC Inc. and Elsevier, Amsterdam, 2005).Google Scholar
Kraft, A., Int. J. Electrochem. Sci. 2, 355 (2007).Google Scholar
Luong, J.H., Male, K.B., Glennon, J.D., Analyst 134, 1965 (2009).Google Scholar
Brillas, E., Martinez-Huitle, C.A., Eds., Synthetic Diamond Films (Wiley, NY, 2011).CrossRefGoogle Scholar
Xu, J., Swain, G.M., Anal. Chem. 70, 1502 (1998).Google Scholar
Ivandini, T.A., Rao, T.N., Fujishima, A., Einaga, Y., Anal. Chem. 78, 3467 (2006).Google Scholar
Wang, J., Swain, G.M., Electrochem. Solid-State Lett. 5, E4 (2002).Google Scholar
LaTorre Riveros, L., Tryk, D.A., Cabrera, C.R., Rev. Adv. Mater. Sci. 10, 256 (2005).Google Scholar
Guo, L., Swope, V.M., Merzougui, B., Swain, G.M., J. Electrochem. Soc. 157, A19 (2010).Google Scholar
Stotter, J., Zak, J., Behler, Z., Show, Y., Swain, G.M., Anal. Chem. 74, 5924 (2002).Google Scholar
Martin, H.B., Morrison, P.W. Jr., Electrochem. Solid-State Lett. 4, E17 (2001).Google Scholar
Dai, Y., Proshlyakov, D.A., Zak, J.K., Swain, G.M., Anal. Chem. 79, 7526 (2007).CrossRefGoogle Scholar
Bonnauron, M., Saada, S., Rousseau, L., Lissorgues, G., Mer, C., Bergonzo, P., Diam. Relat. Mater. 17, 1399 (2008).Google Scholar
Kiran, R., Rousseau, L., Lissorgues, G., Scorsone, E., Bongrain, A., Yvert, B., Picaud, S., Mailley, P., Bergonzo, P., Sensors 12, 7669 (2012).Google Scholar
Maybeck, V., Edgington, R., Bongrain, A., Welch, J.O., Scorsone, E., Bergonzo, P., Jackman, R.B., Offenhausser, A., Adv. Healthc. Mater. 3, 283 (2014).Google Scholar
Kim, D.Y., Merzougui, B., Swain, G.M., Chem. Mater. 21, 2705 (2009).CrossRefGoogle Scholar
Luo, D., Wu, L., Zhi, J., ACS Nano 3, 2121 (2009).Google Scholar
Hees, J., Hoffmann, R., Kriele, A., Smirnov, W., Obloh, H., Glorer, K., Raynor, B., Driad, R., Yang, N., Williams, O.A., Nebel, C.E., ACS Nano 26, 3339 (2011).Google Scholar
Williams, O.A., Diam. Relat. Mater. 20, 621 (2011).CrossRefGoogle Scholar
Butler, J.E., Sumant, A.V., Chem. Vapor Depos. 14, 145 (2008).CrossRefGoogle Scholar
Wang, S., Swope, V.M., Butler, J.E., Feygelson, T., Swain, G.M., Diam. Relat. Mater. 18, 669 (2009).Google Scholar
Gruen, D.M., MRS Bull. 23, 32 (1998).Google Scholar
Chen, Q., Gruen, D.M., Krauss, A.R., Corrigan, T.D., Witek, M., Swain, G.M., J. Electrochem. Soc. 148, E44 (2001).CrossRefGoogle Scholar
Show, Y., Witek, M.A., Sonthalia, P., Gruen, D.M., Swain, G.M., Chem. Mater. 15, 879 (2003).Google Scholar
Neugebohrn, N., Sun, T., Koech, F.A.M., Hembree, G.C., Nemanich, R.J., Schmidt, T., Falta, J., Diam. Relat. Mater. 4, 12 (2013).Google Scholar
Lazea, A., Mortet, V., D’Haen, I., Geithner, P., Ristein, J., D’Olieslaeger, M., Haenen, K., Chem. Phys. Lett. 454, 310 (2008).Google Scholar
Morell, G., Gonzalez-Berrios, A., Weiner, B.R., Gupta, S., J. Mater. Sci. Mater. Electron. 17, 443 (2006).CrossRefGoogle Scholar
Koeck, F.A.M., Nemanich, R.J., Diam. Relat. Mater. 15, 2006 (2006).Google Scholar
Gheeraert, E., Deneuville, A., Mambou, J., Diam. Relat. Mater. 7, 1509 (1998).Google Scholar
Lagrange, J.P., Deneuville, A., Gheeraert, E., Diamond Relat. Mater. 7, 1390 (1998).Google Scholar
Nishimura, K., Das, K., Glass, J.T., J. Appl. Phys. 668, 3142 (1991).Google Scholar
Gheeraert, E., Gonon, P., Deneuville, A., Abello, L., Lucazeau, G., Diam. Relat. Mater. 2, 742 (1993).Google Scholar
Ushizawa, K., Watanabe, K., Ando, T., Sakaguchi, I., Nishitani-Gamo, M., Sato, Y., Kanda, H., Diam. Relat. Mater. 7, 1719 (1998).CrossRefGoogle Scholar
Mermoux, M., Marcus, B., Swain, G.M., Butler, J.E., J. Phys. Chem. B 106, 10816 (2002).Google Scholar
Szunerits, S., Mermoux, M., Crisci, A., Marcus, B., Bouvier, P., Delabouglise, D., Petit, J.-P., Janel, S., Boukherroub, R., Tay, L., J. Phys. Chem. B 110 23888 (2006).Google Scholar
Holt, K.B., Bard, A.J., Show, Y., Swain, G.M., J. Phys. Chem. B 108, 15117 (2004).Google Scholar
Patten, H.V., Meadows, K.E., Hutton, L.A., Iacobini, J.G., Battistel, D., McKelvey, K., Colburn, A.W., Newton, M.E., Macpherson, J.V., Unwin, P.R., Angew. Chem. Int. Ed. 51, 7002 (2012).CrossRefGoogle Scholar
Lu, Y.-G., Turner, S., Verbeeck, J., Janssens, S., Wagner, P., Haenen, K., Van Tendeloo, G., Appl. Phys. Lett. 101, 041907 (2012).Google Scholar
Latto, M.N., Pastor-Moreno, G., Riley, D.J., Electroanalysis 16, 434 (2004).Google Scholar
Granger, M.C., Swain, G.M., J. Electrochem. Soc. 146, 4551 (1999).Google Scholar
Bennett, J.A., Wang, J., Show, Y., Swain, G.M., J. Electrochem. Soc. 151, E306 (2004).Google Scholar
Miyata, K., Kumagai, K., Nishimura, K., Kobashi, K., J. Mater. Res. 8, 2845 (1993).Google Scholar
Watanabe, T., Shimizu, T.K., Tateyama, Y., Kim, Y., Kawai, M., Einaga, Y., Diam. Relat. Mater. 19, 772 (2010).Google Scholar
Granger, M.C., Xu, J., Strojek, J.W., Swain, G.M., Anal. Chim. Acta 397, 145 (1999).Google Scholar
Suffredini, H.B., Pedrosa, V.A., Codognoto, L., Machado, S.A.S., Rocha-Filho, R.C., Avaca, L.A., Electrochim. Acta 49, 4021 (2004).Google Scholar
Salazar-Barda, G.R., Andrade, L.S., Nascente, P.A.P., Dizani, P.S., Rocha-Filho, R.C., Avaca, L.A., Electrochim. Acta 51, 4612 (2006).Google Scholar
Duo, I., Levy-Clement, C., Fujishima, A., Comninellis, C., J. Appl. Electrochem. 34, 935 (2004).Google Scholar
Rice, R.J., McCreery, R.L., Anal. Chem. 61, 1637 (1989).CrossRefGoogle Scholar
Hu, I.-F., Karweik, D.H., Kuwana, T., J. Electroanal. Chem. 188, 59 (1985).Google Scholar
DeClements, R., Dallas, T., Swain, G.M., Holtz, M.W., Herrick, R.D., Stickney, J.L., Langmuir 12, 6578 (1996).Google Scholar
Rusling, J., ECS Interface 18 (2), 34 (2009).Google Scholar
Heller, A., Feldman, B., Chem. Rev. 108, 2482 (2008).Google Scholar
Lee, Y., Kim, J., Anal. Chem. 79, 7669 (2007).Google Scholar
Fang, Y., Wang, E., Chem. Commun. 49, 9526 (2013).Google Scholar
Niu, X., Lan, M., Zhao, H., Chen, C., Li, Y., Zhu, X., Anal. Lett. 46, 2479 (2013).Google Scholar
Shin, D., Sarada, B.V., Tryk, D.A., Fujishima, A., Wang, J., Anal. Chem. 75, 530 (2003).Google Scholar
Soh, K.L., Kang, W.P., Davidson, J.L., Wong, Y.M., Wisitsora-at, A., Swain, G., Cliffel, D.E., Sens. Actuators B 91, 39 (2003).Google Scholar
Eisele, A.P.P., Clausen, D.N., Tarley, C.R.T., Dall’Antonia, L.H., Sartori, E.R., Electroanalysis 25, 1734 (2013).Google Scholar
Shin, D.T., Tryk, D.A., Fujishima, A., Merkoci, A., Wang, J., Electroanalysis 17, 305 (2005).Google Scholar
Hoffmann, R., Kriele, A., Obloh, H., Hees, J., Wolfer, M., Smirnov, W., Yang, N., Nebel, C.E., Appl. Phys. Lett. 97, 052103 (2010).Google Scholar
Gan, P., Compton, R.G., Foord, J.S., Electroanalysis 25, 2423 (2013).Google Scholar
Nebel, C.E., Yang, N., Uetsuka, H., Osawa, E., Tokuda, N., Williams, O., Diamond Relat. Mater. 18, 910 (2009).Google Scholar
Halpern, J.M., Xie, S., Sutton, G.P., Higashikubo, B.T., Chestek, C.A., Liu, H., Chiel, H.J., Martin, H.B., Diam. Rel. Mater. 15, 183 (2006).Google Scholar
Cvacka, J., Quaiserova, V., Park, J.W., Show, Y., Muck, A., Swain, G.M., Anal. Chem. 75, 2678 (2003).Google Scholar
Park, J., Quaiserova-Mocko, V., Patel, B.A., Novotny, M., Liu, A.H., Bian, X.C., Galligan, J.J., Swain, G.M., Analyst 133, 17 (2008).Google Scholar
Park, J., Galligan, J.J., Fink, G.D., Swain, G.M., Anal. Chem. 78, 6756 (2006).Google Scholar
Patel, B.A., Bian, X., Quaiserova-Mocko, V., Galligan, J.J., Swain, G.M., Analyst 132, 41 (2007).Google Scholar
Park, J., Galligan, J.J., Fink, G.D., Swain, G.M., Auton. Neurosci. 152, 11 (2010).Google Scholar