Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-01T00:08:51.564Z Has data issue: false hasContentIssue false

Distribution and reproductive capacity of Deschampsia antarctica and Colobanthus quitensis on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica

Published online by Cambridge University Press:  20 March 2013

María Luisa Vera*
Affiliation:
Departamento de Biología de Organizmos y Sistemas, Universidad de Oviedo, 33071 Oviedo, Spain
Teresa Fernández-Teruel
Affiliation:
La Cuesta de Fuente Pinilla S/N 23280 - Beas de Segura (Jaén), Spain
Antonio Quesada
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract

The Maritime Antarctic is one of the regions where regional climate change is most intense and the reproductive performance of plants may be enhanced. Reporting the distribution of Deschampsia antarctica and Colobanthus quitensis on Byers Peninsula (Livingston Island, South Shetland Islands), our results confirm that D. antarctica is more widespread than C. quitensis. Flower and seed development of both species varied between sites. Deschampsia antarctica produced more viable seeds than C. quitensis, although fully developed seeds were not found at all locations. Seed production in C. quitensis was low in comparison with other Antarctic locations. The largest cushions of Colobanthus observed in 2002 were 15 cm in diameter, suggesting that the populations may have established at least 50 years ago. Deschampsia antarctica tussocks were very often 20 cm in diameter, although turf areas up to 1.5 m across were also observed, probably due to coalesced aggregates of individuals. This study shows that, although seed production is low, the presence of seedlings and young individuals suggests an expansion process.

Type
Research Articles
Copyright
Copyright © Antarctic Science Ltd 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bañón, M. 2004. Introducción al clima de la Península de Byers, Isla de Livingston, Antártida. Comparación con la B.A.E. Juan Carlos I. MSc thesis, Universidad de Alicante, 112 pp. [Unpublished.]Google Scholar
Bañón, M., Justel, A.Quesada, A. 2013. Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarctic Science, 25, 10.1017/S0954102012001046.CrossRefGoogle Scholar
Björck, S.Zale, R. 1996. Late Holocene tephrochronology and palaeoclimate, based on lake sediment studies. In López-Martínez, J., Thomson, M.R.A. & Thomson, J.W., eds. Geomorphological map of Byers Peninsula, Livingston Island. BAS GEOMAP Series, Sheet 5-A. 1:25 000, Cambridge: British Antarctic Survey, 4348.Google Scholar
Casaretto, J.A., Corcuera, L.J., Serey, I.Zuñiga, G.E. 1994. Size structure of a population of Deschampsia antarctica Desv. in Robert Island, Maritime Antarctica. Serie Científica, Instituto Antárctico Chileno, 44, 6166.Google Scholar
Convey, P. 1996. Reproduction of Antarctic flowering plants. Antarctic Science, 8, 127134.CrossRefGoogle Scholar
Convey, P., Hopkins, D.W., Roberts, S.J.Tyler, N. 2011. Global southern limit of flowering plants and moss peat accumulation. Polar Research, 10.3402/polar.v30i0.8929.Google Scholar
Corner, R.W.M. 1971. Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. IV. Distribution and reproductive performance in the Argentine islands. British Antarctic Survey Bulletin, No. 26, 4150.Google Scholar
Day, T.A., Ruhland, C.T., Grobe, C.W.Xiong, F. 1999. Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia, 119, 2435.CrossRefGoogle ScholarPubMed
Edwards, J.A. 1972. Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. V. Distribution, ecology and vegetative performance on Signy Island. British Antarctic Survey Bulletin, No. 28, 1128.Google Scholar
Edwards, J.A. 1974. Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. VI. Reproductive performance on Signy Island. British Antarctic Survey Bulletin, No. 39, 6786.Google Scholar
Edwards, J.A. 1975. Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. VII. Cyclic changes related to age in Colobanthus quitensis. British Antarctic Survey Bulletin, No. 40, 16.Google Scholar
Fowbert, J.A.Smith, R.I.L. 1994. Rapid population increases in native vascular plants in the Argentine islands, Antarctic Peninsula. Arctic and Alpine Research, 26, 290296.CrossRefGoogle Scholar
Gerighausen, U., Bräutigam, K., Mustafa, O.Peter, H-U. 2003. Expansion of vascular plants on an Antarctic island - a consequence of climate change?In Huiskes, A.H.L., Gieskes, W.W.C., Rocema, J., Schorno, R.M.L., van der Vies, S.M. & Wolff, W.J., eds. Antarctic biology in a global context. The Netherlands: Backhuys, 7983.Google Scholar
Greene, D.M.Holtom, A. 1971. Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. III. Distribution, habitats and performance in the Antarctic botanical zone. British Antarctic Survey Bulletin, No. 26, 129.Google Scholar
Grobe, C.W., Ruhland, C.T.Day, T.A. 1997. A new population of Colobanthus quitensis near Arthur Harbor, Antarctica: correlating recruitment with warmer summer temperatures. Arctic and Alpine Research, 29, 217221.CrossRefGoogle Scholar
Havström, M., Callaghan, T.V.Jonasson, S. 1993. Differential growth responses of Cassiope tetragona, and arctic dwarf-shrub, to environmental perturbation among three contrasting high- and subarctic sites. Oikos, 66, 389402.CrossRefGoogle Scholar
Holtom, A.Greene, S.W. 1967. The growth and reproduction of Antarctica flowering plants. Philosophical Transactions of the Royal Society of London, B252, 323337.Google Scholar
Körner, C. 1999. Alpine plant life. Functional plant ecology of high mountain ecosystems. Berlin: Springer, 333 pp.Google Scholar
Kozeretska, I.A., Parnikoza, I.Yu., Mustafa, O., Tyschenko, O.V., Korsun, S.G.Convey, P. 2010. Development of Antarctic herb tundra vegetation near Arctowski station, King George Island. Polar Science, 3, 254261.CrossRefGoogle Scholar
Leck, M.A., Parker, V.T.Simpson, R.L.eds. 1989. Ecology of soil seed banks. San Diego, CA: Academic Press, 462 pp.Google Scholar
Lindsay, D.C. 1971. Vegetation of the South Shetland Islands. British Antarctic Survey Bulletin, No. 25, 5983.Google Scholar
McGraw, J.B.Day, T.A. 1997. Size and characteristics of natural seed bank in Antarctica. Arctic and Alpine Research, 29, 213216.CrossRefGoogle Scholar
Miller, G.R.Cummins, R.P. 1987. Role of buried viable seeds in the recolonization of disturbed ground by heather (Calluna vulgaris (L.) Hull) in the Cairngorm Mountains, Scotland, U.K. Arctic and Alpine Research, 19, 396401.CrossRefGoogle Scholar
Parnikoza, I.Y., Maidanuk, D.N.Kozeretska, I.A. 2007. Are Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. migratory relicts? Cytology and Genetics, 41, 226229.CrossRefGoogle ScholarPubMed
Parnikoza, I., Dykyy, I., Ivanets, V., Kozeretska, I., Kunakh, V., Rozok, A., Ochyra, R.Convey, P. 2012. Use of Deschampsia antarctica for nest building by the kelp gull in the Argentine islands area (Maritime Antarctica) and its possible role in plant dispersal. Polar Biology, 10.1007/s00300-012-1212-5.CrossRefGoogle Scholar
Peñuelas, J.Filella, I. 2001. Responses to a warming world. Science, 294, 793795.CrossRefGoogle ScholarPubMed
Quesada, A., Camacho, A., Rochera, C.Velázquez, D. 2009. Byers Peninsula: a reference site for coastal, terrestrial and limnetic ecosystems studies in Maritime Antarctica. Polar Science, 3, 181187.CrossRefGoogle Scholar
Robinson, S.A., Wasley, J.Tobin, A.K. 2003. Living on the edge - plants and global change continental and Maritime Antarctica. Global Change Biology, 9, 16811717.CrossRefGoogle Scholar
Rochera, C., Justel, A., Fernández-Valiente, E., Bañón, M., Rico, E., Toro, M., Camacho, A.Quesada, A. 2010. Interannual meteorological variability and its effects on a lake from Maritime Antarctica. Polar Biology, 33, 16151628.CrossRefGoogle Scholar
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C.Pounds, J.A. 2003. Fingerprints of global warming on wild animals and plants. Nature, 421, 5760.CrossRefGoogle ScholarPubMed
Ruhland, C.T.Day, T.A. 2001. Size and longevity of seed banks in Antarctica and the influence of ultraviolet-B radiation on survivorship, growth and pigment concentrations of Colobanthus quitensis seedlings. Environmental and Experimental Botany, 45, 143154.CrossRefGoogle ScholarPubMed
[Servicio Geográfico]. 1992. Antarctic cartography, Byers Peninsula, Livingston Island. 1:25 000. Madrid: Servicio Geográfico del Ejercito, Universidad Autónoma de Madrid, and Cambridge: British Antarctic Survey.Google Scholar
Smith, R.I.L. 1994. Vascular plants as bioindicators or regional warming in Antarctica. Oecologia, 99, 322328.CrossRefGoogle ScholarPubMed
Smith, R.I.L. 2003. The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In Huiskes, A.H.L., Gieskes, W.W.C., Rocema, J., Schorno, R.M.L., van der Vies, S.M. & Wolff, W.J., eds. Antarctic biology in a global context. The Netherlands: Backhuys, 234239.Google Scholar
Thomson, M.R.A.López-Martínez, J. 1996. Introduction. In López-Martínez, J., Thomson, M.R.A. & Thomson, J.W., eds. Geomorphological map of Byers Peninsula, Livingston island. BAS GEOMAP Series, Sheet 5-A, 1:25 000. Cambridge: British Antarctic Survey, 14.Google Scholar
Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., Lagun, V., Teid, P.A.Jagovkina, S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279294.CrossRefGoogle Scholar
Vera, M.L. 2011. Colonization and demographic structure of Deschampsia antarctica and Colobanthus quitensis along an altitudinal gradient on Livingston Island, South Shetland Islands, Antarctica. Polar Research, 30, 10.3402/polar.v.30i0.7146.CrossRefGoogle Scholar
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J-M., Hoegh-Guldberg, O.Bairlein, F. 2002. Ecological responses to recent climate change. Nature, 416, 389395.CrossRefGoogle ScholarPubMed
Wookey, P.A., Parsons, A.N., Welker, J.M., Potter, J.A., Callaghan, T.V., Lee, J.A.Press, M.C. 1993. Comparative responses of phenology and reproductive development to simulate environmental change in sub-Arctic and high Arctic plants. Oikos, 67, 490502.CrossRefGoogle Scholar