Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-12T14:02:13.834Z Has data issue: false hasContentIssue false

Evolution of ice rises in the Fimbul Ice Shelf, Dronning Maud Land, over the last millennium

Published online by Cambridge University Press:  26 February 2024

Vikram Goel*
Affiliation:
National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, India
Carlos Martín
Affiliation:
British Antarctic Survey, Natural Environmental Research Council, Cambridge, UK
Kenichi Matsuoka
Affiliation:
Norwegian Polar Institute, Tromsø, Norway

Abstract

We investigate two ice rises, Kupol Moskovskij and Kupol Ciolkovskogo, in the Fimbul Ice Shelf, East Antarctica, situated ~60 km from each other but differing in their glaciological settings. We apply a thermo-mechanically coupled Elmer/Ice model to profiles going across these ice rises and use it to investigate their past evolution covering present to several millennia ago. We constrain the model results using field measurements, including surface-velocity measurements, and surface mass balance estimated by isochronous radar stratigraphy dated with firn cores. We find that the ice rises are thickening at present (2012–2014), which started only in recent decades. Investigation of deeper radar reflectors suggests a stronger upwind-downwind contrast in surface mass balance in the past for both ice rises, with varying details. This result matches what was previously found on Blåskimen Island ice rise, which is also in the Fimbul Ice Shelf. Moreover, Kupol Moskovskij, situated at a shear margin, shows signs of recent changes in its ice-divide position, while Kupol Ciolkovskogo shows a more stable divide position. This study highlights the long-term influence of surface mass balance on ice rises, as well as the strong influence of local glaciological settings on their evolution.

Type
Physical Sciences
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, M., Wiens, D.A., Zhao, Y., Feng, M., Nyblade, A., Kanao, M., et al. 2015. Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities. Journal of Geophysical Research - Solid Earth, 120, 10.1002/2015JB011917.CrossRefGoogle Scholar
Callens, D., Drews, R., Witrant, E., Philippe, M. & Pattyn, F. 2016. Temporally stable surface mass balance asymmetry across an ice rise derived from radar internal reflection horizons through inverse modeling. Journal of Glaciology, 62, 10.1017/jog.2016.41.CrossRefGoogle Scholar
Conway, H., Hall, B.L., Denton, G.H., Gades, A.M. & Waddington, E.D. 1999. Past and future grounding-line retreat of the West Antarctic Ice Sheet. Science, 286, 10.1126/science.286.5438.280.CrossRefGoogle ScholarPubMed
Dahl-Jensen, D. 1989. Steady thermomechanical flow along two-dimensional flow lines in large grounded ice sheets. Journal of Geophysical Research - Solid Earth, 94, 10.1029/JB094iB08p10355.CrossRefGoogle Scholar
Drews, R., Martín, C., Steinhage, D. & Eisen, O. 2013. Characterizing the glaciological conditions at Halvfarryggen ice dome, Dronning Maud Land, Antarctica. Journal of Glaciology, 59, 10.3189/2013JoG12J134.CrossRefGoogle Scholar
Drews, R., Matsuoka, K., Martín, C., Callens, D., Bergeot, N. & Pattyn, F. 2015. Evolution of Derwael Ice Rise in Dronning Maud Land, Antarctica, over the last millennia. Journal of Geophysical Research - Earth Surface, 120, 10.1002/2014JF003246.CrossRefGoogle Scholar
Fujita, S., Maeno, H., Uratsuka, S., Furukawa, T., Mae, S., Fujii, Y. & Watanabe, O. 1999. Nature of radio echo layering in the Antarctic Ice Sheet detected by a two-frequency experiment. Journal of Geophysical Research - Solid Earth, 104, 10.1029/1999JB900034.CrossRefGoogle Scholar
Fürst, J.J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M., Braun, M. & Gagliardini, O. 2016. The safety band of Antarctic ice shelves. Nature Climate Change, 6, 10.1038/nclimate2912.CrossRefGoogle Scholar
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., et al. 2013. Capabilities and performance of the Elmer/Ice model, a new-generation ice sheet model. Geoscientific Model Development, 6, 10.5194/gmd-6-1299-2013.CrossRefGoogle Scholar
Gillet-Chaulet, F., Hindmarsh, R.C.A., Corr, H.F.J., King, E.C. & Jenkins, A. 2011. In-situ quantification of ice rheology and direct measurement of the Raymond Effect at Summit, Greenland using a phase-sensitive radar. Geophysical Research Letters, 38, 10.1029/2011GL049843.CrossRefGoogle Scholar
Goel, V., Brown, J. & Matsuoka, K. 2017. Glaciological settings and recent mass balance of Blåskimen Island in Dronning Maud Land, Antarctica. The Cryosphere, 11, 10.5194/tc-11-2883-2017.CrossRefGoogle Scholar
Goel, V., Martín, C. & Matsuoka, K. 2018. Ice-rise stratigraphy reveals changes in surface mass balance over the last millennia in Dronning Maud Land. Journal of Glaciology, 64, 10.1017/jog.2018.81.CrossRefGoogle Scholar
Goel, V., Morris, A., Moholdt, G. & Matsuoka, K. 2022. Synthesis of field and satellite data to elucidate recent mass balance of five ice rises in Dronning Maud Land, Antarctica. Frontiers in Earth Science, 10, 10.3389/feart.2022.975606.CrossRefGoogle Scholar
Goel, V., Matsuoka, K., Berger, C.D., Lee, I., Dall, J. & Forsberg, R. 2020. Characteristics of ice rises and ice rumples in Dronning Maud Land and Enderby Land, Antarctica. Journal of Glaciology, 66, 10.1017/jog.2020.77.CrossRefGoogle Scholar
Goodwin, A.H. & Vaughan, D.G. 1995. A topographic origin for double-ridge features in visible imagery of ice divides in Antarctica. Journal of Glaciology, 41, 10.3189/S0022143000034821.CrossRefGoogle Scholar
Haran, T., Bohlander, J., Scambos, T., Painter, T. & Fahnestock, M. 2005. MODIS Mosaic of Antarctica 20032004 (MOA2004). Retrieved from http://www.usap-dc.org/view/dataset/609280.Google Scholar
Hindmarsh, R.C.A., King, E.C., Mulvaney, R., Corr, H.F.J., Hiess, G. & Gillet-Chaulet, F. 2011. Flow at ice-divide triple junctions: 2. Three-dimensional views of isochrone architecture from ice-penetrating radar surveys. Journal of Geophysical Research - Earth Surface, 116, 10.1029/2009JF001622.Google Scholar
Howat, I.M., Porter, C., Smith, B.E., Noh, M.-J. & Morin, P. 2019. The Reference Elevation Model of Antarctica. The Cryosphere, 13, 10.5194/tc-13-665-2019.CrossRefGoogle Scholar
Hudleston, P.J. 2015. Structures and fabrics in glacial ice: a review. Journal of Structural Geology, 81, 10.1016/j.jsg.2015.09.003.CrossRefGoogle Scholar
Hvidberg, C.S. 1996. Steady-state thermomechanical modelling of ice flow near the centre of large ice sheets with the finite-element technique. Annals of Glaciology, 23, 10.3189/S026030550001332X.CrossRefGoogle Scholar
Kausch, T., Lhermitte, S., Lenaerts, J.T.M., Wever, N., Inoue, M., Pattyn, F., et al. 2020. Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling. The Cryosphere, 14, 10.5194/tc-14-3367-2020.CrossRefGoogle Scholar
Kingslake, J., Martín, C., Arthern, R.J., Corr, H.F.J. & King, E.C. 2016. Ice-flow reorganization in West Antarctica 2.5 kyr ago dated using radar-derived englacial flow velocities. Geophysical Research Letters, 43, 10.1002/2016GL070278.CrossRefGoogle Scholar
Kohler, J., Moore, J., Kennett, M., Engeset, R. & Elvehøy, H. 1997. Using ground-penetrating radar to image previous years' summer surfaces for mass-balance measurements. Annals of Glaciology, 24, 10.3189/S0260305500012441.CrossRefGoogle Scholar
Ma, Y., Gagliardini, O., Ritz, C., Gillet-Chaulet, F., Durand, G. & Montagnat, M. 2010. Enhancement factors for grounded ice and ice shelves inferred from an anisotropic ice-flow model. Journal of Glaciology, 56, 10.3189/002214310794457209.CrossRefGoogle Scholar
Mangeney, A., Califano, F. & Castelnau, O. 1996. Isothermal flow of an anisotropic ice sheet in the vicinity of an ice divide. Journal of Geophysical Research - Solid Earth, 101, 10.1029/96JB01924.CrossRefGoogle Scholar
Martín, C., Gudmundsson, G.H. & King, E.C. 2014. Modelling of Kealey Ice Rise, Antarctica, reveals stable ice-flow conditions in East Ellsworth Land over millennia. Journal of Glaciology, 60, 10.3189/2014JoG13J089.CrossRefGoogle Scholar
Martín, C., Hindmarsh, R.C.A. & Navarro, F.J. 2009a. On the effects of divide migration, along-ridge flow, and basal sliding on isochrones near an ice divide. Journal of Geophysical Research, 114, 10.1029/2008JF001025.CrossRefGoogle Scholar
Martín, C., Gudmundsson, G.H., Pritchard, H.D. & Gagliardini, O. 2009b. On the effects of anisotropic rheology on ice flow, internal structure, and the age-depth relationship at ice divides. Journal of Geophysical Research, 114, 10.1029/2008JF001204.CrossRefGoogle Scholar
Matsuoka, K., Hindmarsh, R.C.A., Moholdt, G., Bentley, M.J., Pritchard, H.D., Brown, J., et al. 2015. Antarctic ice rises and rumples: their properties and significance for ice-sheet dynamics and evolution. Earth-Science Reviews, 150, 10.1016/j.earscirev.2015.09.004.CrossRefGoogle Scholar
Matsuoka, K., Skoglund, A., Roth, G., de Pomereu, J., Griffiths, H., Headland, R., et al. 2021. Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands. Environmental Modelling & Software, 140, 10.1016/j.envsoft.2021.105015.CrossRefGoogle Scholar
Moholdt, G. & Matsuoka, K. 2015. Inventory of Antarctic ice rises and rumples (version 1). Norwegian Polar Institute. Retrieved from https://doi.org/10.21334/npolar.2015.9174e644CrossRefGoogle Scholar
Mulvaney, R., Oerter, H., Peel, D.A., Graf, W., Arrowsmith, C., Pasteur, E.C., et al. 2002. 1000 year ice-core records from Berkner Island, Antarctica. Annals of Glaciology, 35, 10.3189/172756402781817176.CrossRefGoogle Scholar
Parrenin, F., Hindmarsh, R.C.A. & Rémy, F. 2006. Analytical solutions for the effect of topography, accumulation rate and lateral flow divergence on isochrone layer geometry. Journal of Glaciology, 52, 10.3189/172756506781828728.CrossRefGoogle Scholar
Pettit, E.C., Thorsteinsson, T., Jacobson, H.P. & Waddington, E.D. 2007. The role of crystal fabric in flow near an ice divide. Journal of Glaciology, 53, 10.3189/172756507782202766.CrossRefGoogle Scholar
Philippe, M., Tison, J.-L., Fjøsne, K., Hubbard, B., Kjær, H.A., Lenaerts, J.T.M., et al. 2016. Ice core evidence for a 20th century increase in surface mass balance in coastal Dronning Maud Land, East Antarctica. The Cryosphere, 10, 10.5194/tc-10-2501-2016.CrossRefGoogle Scholar
Raymond, C.F. 1983. Deformation in the vicinity of ice divides. Journal of Glaciology, 29, 10.3189/S0022143000030288.CrossRefGoogle Scholar
Richardson, C., Aarholt, E., Hamran, S.-E., Holmlund, P. & Isaksson, E. 1997. Spatial distribution of snow in western Dronning Maud Land, East Antarctica, mapped by a ground-based snow radar. Journal of Geophysical Research - Solid Earth, 102, 10.1029/97JB01441.CrossRefGoogle Scholar
Rignot, E., Mouginot, J. & Scheuchl, B. 2011. Ice flow of the Antarctic Ice Sheet. Science, 333, 14271430.Google ScholarPubMed
Sinisalo, A., Anschütz, H., Aasen, A.T., Langley, K., von Deschwanden, A., Kohler, J., et al. 2013. Surface mass balance on Fimbul Ice Shelf, East Antarctica: comparison of field measurements and large-scale studies. Journal of Geophysical Research - Atmospheres, 118, 10.1002/jgrd.50875.Google Scholar
Spikes, V.B., Hamilton, G.S., Arcone, S.A., Kaspari, S. & Mayewski, P.A. 2004. Variability in accumulation rates from GPR profiling on the West Antarctic plateau. Annals of Glaciology, 39, 10.3189/172756404781814393.CrossRefGoogle Scholar
Still, H., Campbell, A. & Hulbe, C. 2019. Mechanical analysis of pinning points in the Ross Ice Shelf, Antarctica. Annals of Glaciology, 60, 10.1017/aog.2018.31.CrossRefGoogle Scholar
Van Der Veen, C.J. 1999. Fundamentals of glacier dynamics. Rotterdam; Brookfield, VT: A. A. Balkema, 462 pp.Google Scholar
Vaughan, D.G., Corr, H.F.J., Doake, C.S.M. & Waddington, E.D. 1999. Distortion of isochronous layers in ice revealed by ground-penetrating radar. Nature, 398, 10.1038/18653.CrossRefGoogle Scholar
Vega, C.P., Schlosser, E., Divine, D.V., Kohler, J., Martma, T., Eichler, A., et al. 2016. Surface mass balance and water stable isotopes derived from firn cores on three ice rises, Fimbul Ice Shelf, Antarctica. The Cryosphere, 10, 10.5194/tc-10-2763-2016.CrossRefGoogle Scholar
Wearing, M.G. & Kingslake, J. 2019. Holocene formation of Henry Ice Rise, West Antarctica, inferred from ice-penetrating radar. Journal of Geophysical Research - Earth Surface, 124, 10.1029/2018JF004988.CrossRefGoogle Scholar
Winstrup, M., Vallelonga, P., Kjær, H.A., Fudge, T.J., Lee, J.E., Riis, M.H., et al. 2019. A 2700-year annual timescale and accumulation history for an ice core from Roosevelt Island, West Antarctica. Climate of the Past, 15, 10.5194/cp-15-751-2019.CrossRefGoogle Scholar