Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T05:59:10.466Z Has data issue: false hasContentIssue false

Development and spindle formation in rat somatic cell nuclear transfer (SCNT) embryos in vitro using porcine recipient oocytes

Published online by Cambridge University Press:  01 August 2009

Atsushi Sugawara*
Affiliation:
Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai 981–8555, Japan.
Satoshi Sugimura
Affiliation:
Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, 1–1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981–8555, Japan.
Yumi Hoshino
Affiliation:
Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, 1–1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981–8555, Japan.
Eimei Sato
Affiliation:
Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, 1–1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981–8555, Japan.
*
All correspondence to: Atsushi Sugawara. Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai 981–8555, Japan. Tel:/Fax: +81 22 717 8687. e-mail: a-sugawara@m.tains.tohoku.ac.jp

Summary

Cloning that uses somatic cell nuclear transfer (SCNT) technology with gene targeting could be a potential alternative approach to obtain valuable rat models. In the present study, we determined the developmental competence of rat SCNT embryos constructed using murine and porcine oocytes at metaphase II (MII). Further, we assessed the effects of certain factors, such as: (i) the donor cell type (fetal fibroblasts or cumulus cells); and (ii) premature chromosome condensation (PCC) with normal spindle formation, on the developmental competence of rat interspecies SCNT (iSCNT) embryos. iSCNT embryos that had been constructed using porcine oocytes developed to the blastocyst stage, while those embryos made using murine MII oocytes did not. Rat iSCNT embryos constructed with green fluorescent protein (GFP)-expressing fetal fibroblasts injected into porcine oocytes showed considerable PCC with a normal bipolar spindle formation. The total cell number of iSCNT blastocyst derived from GFP-expressing fetal fibroblasts was higher than the number derived from cumulus cells. In addition, these embryos expressed GFP at the blastocyst stage. This paper is the first report to show that rat SCNT embryos constructed using porcine MII oocytes have the potential to develop to the blastocyst stage in vitro. Thus the iSCNT technique, when performed using porcine MII oocytes, could provide a new bioassay system for the evaluatation of the developmental competence of rat somatic cells.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balbach, S.T., Jauch, A., Bohm-Steuer, B., Cavaleri, F.M., Han, Y.M. & Boiani, M. (2007). Chromosome stability differs in cloned mouse embryos and derivative ES cells. Dev. Biol. 308, 309–21.CrossRefGoogle ScholarPubMed
Bean, C.J., Hunt, P.A., Millie, E.A. & Hassold, T.J. (2001). Analysis of a malsegregating mouse Y chromosome: evidence that the earliest cleavage divisions of the mammalian embryo are non-disjunction-prone. Hum. Mol. Genet. 10, 963–72.CrossRefGoogle ScholarPubMed
Bean, C.J., Hassold, T.J., Judis, L. & Hunt, P.A. (2002). Fertilization in vitro increases non-disjunction during early cleavage divisions in a mouse model system. Hum. Reprod. 17, 2362–7.CrossRefGoogle Scholar
Beyhan, Z., Iager, A.E. & Cibelli, J.B. (2007). Interspecies nuclear transfer: implications for embryonic stem cell biology. Cell. Stem Cell 1, 502–12.CrossRefGoogle ScholarPubMed
Chatot, C.L., Lewis, J.L., Torres, I. & Ziomek, C.A. (1990). Development of 1-cell embryos from different strains of mice in CZB medium. Biol. Reprod. 42, 432–40.CrossRefGoogle ScholarPubMed
Dominko, T., Mitalipova, M., Haley, B., Beyhan, Z., Memili, E., McKusick, B. & First, N.L. (1999). Bovine oocyte cytoplasm supports development of embryos produced by nuclear transfer of somatic cell nuclei from various mammalian species. Biol. Reprod. 60, 14961502.CrossRefGoogle ScholarPubMed
Hakamata, Y., Tahara, K., Uchida, H., Sakuma, Y., Nakamura, M., Kume, A., Murakami, T., Takahashi, M., Takahashi, R., Hirabayashi, M., Ueda, M., Miyoshi, I., Kasai, N. & Kobayashi, E. (2001). Green fluorescent protein-transgenic rat: a tool for organ transplantation research. Biochem. Biophys. Res. Commun. 286, 779–85.CrossRefGoogle Scholar
Hashem, M.A., Bhandari, D.P., Kang, S.K. & Lee, B.C. (2007). Cell cycle analysis and interspecies nuclear transfer of in vitro cultured skin fibroblasts of the Siberian tiger (Panthera tigris Altaica). Mol. Reprod. Dev. 74, 403–11.CrossRefGoogle ScholarPubMed
Hayes, E., Galea, S., Verkuylen, A., Pera, M., Morrison, J., Lacham-Kaplan, O. & Trounson, A. (2001). Nuclear transfer of adult and genetically modified fetal cells of the rat. Physiol. Genomics 5, 193204.CrossRefGoogle ScholarPubMed
Hirabayashi, M., Kato, M., Ishikawa, A. & Hochi, S. (2003). Factors influencing chromosome condensation and development of cloned rat embryos. Cloning Stem Cells 5, 3542.CrossRefGoogle ScholarPubMed
Ito, J., Hirabayashi, M., Kato, M., Takeuchi, A., Ito, M., Shimada, M. & Hochi, S. (2005). Contribution of high p34cdc2 kinase activity to premature chromosome condensation of injected somatic cell nuclei in rat oocytes. Reproduction 129, 171–80.CrossRefGoogle ScholarPubMed
Kato, M., Hirabayashi, M., Aoto, T., Ito, K., Ueda, M. & Hochi, S. (2001). Strontium-induced activation regimen for rat oocytes in somatic cell nuclear transplantation. J. Reprod. Dev. 47, 407–13.CrossRefGoogle Scholar
Kawahara, M., Wakai, T., Yamanaka, K., Kobayashi, J., Sugimura, S., Shimizu, T., Matsumoto, H., Kim, J.H., Sasada, H. & Sato, E. (2005). Caffeine promotes premature chromosome condensation formation and in vitro development in porcine reconstructed embryos via a high level of maturation promoting factor activity during nuclear transfer. Reproduction 130, 351–7.CrossRefGoogle Scholar
Keefer, C.L. & Schuetz, A.W. (1982). Spontaneous activation of ovulated rat oocytes during in vitro culture. J. Exp. Zool. 224, 371–7.CrossRefGoogle ScholarPubMed
Mastromonaco, G.F., Favetta, L.A., Smith, L.C., Filion, F. & King, W.A. (2007). The influence of nuclear content on developmental competence of gaur × cattle hybrid in vitro fertilized and somatic cell nuclear transfer embryos. Biol. Reprod. 76, 514–23.CrossRefGoogle ScholarPubMed
Miyara, F., Han, Z., Gao, S., Vassena, R. & Latham, K.E. (2006). Non-equivalence of embryonic and somatic cell nuclei affecting spindle composition in clones. Dev. Biol. 289, 206–17.CrossRefGoogle ScholarPubMed
Miyoshi, K., Kono, T. & Niwa, K. (1997). Stage-dependent development of rat 1-cell embryos in a chemically defined medium after fertilization in vivo and in vitro. Biol. Reprod. 56, 180–5.CrossRefGoogle Scholar
Nakajima, N., Inomata, T., Ito, J. & Kashiwazaki, N. (2008). Treatment with proteasome inhibitor MG132 during cloning improves survival and pronuclear number of reconstructed rat embryos. Cloning Stem Cells 10, 461–8.CrossRefGoogle ScholarPubMed
Petters, R.M. & Wells, K.D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 6173.Google ScholarPubMed
Phelps, C.J., Koike, C., Vaught, T.D., Boone, J., Wells, K.D., Chen, S.H., Ball, S., Specht, S.M., Polejaeva, I.A., Monahan, J.A., Jobst, P.M., Sharma, S.B., Lamborn, A.E., Garst, A.S., Moore, M., Demetris, A.J., Rudert, W.A., Bottino, R., Bertera, S., Trucco, M., Starzl, T.E., Dai, Y. & Ayares, D.L. (2003). Production of alpha1,3-galactosyltransferase-deficient pigs. Science 299, 411–4.CrossRefGoogle ScholarPubMed
Popova, E., Bader, M. & Krivokharchenko, A. (2009). Efficient production of nuclear transferred rat embryos by modified methods of reconstruction. Mol. Reprod. Dev. 76, 208–16.CrossRefGoogle ScholarPubMed
Quinn, P., Barros, C. & Whittingham, D.G. (1982). Preservation of hamster oocytes to assay the fertilizing capacity of human spermatozoa. J. Reprod. Fertil. 66, 161–8.CrossRefGoogle ScholarPubMed
Sendai, Y., Sawada, T., Urakawa, M., Shinkai, Y., Kubota, K., Hoshi, H. & Aoyagi, Y. (2006). alpha1,3-galactosyltransferase-gene knockout in cattle using a single targeting vector with loxP sequences and Cre-expressing adenovirus. Transplantation 81, 760–6.CrossRefGoogle ScholarPubMed
Shinozawa, T., Mizutani, E., Tomioka, I., Kawahara, M., Sasada, H., Matsumoto, H. & Sato, E. (2004). Differential effect of recipient cytoplasm for microtubule organization and preimplantation development in rat reconstituted embryos with two-cell embryonic cell nuclear transfer. Mol. Reprod. Dev. 68, 313–8.CrossRefGoogle ScholarPubMed
Sugimura, S., Kawahara, M., Wakai, T., Yamanaka, K., Sasada, H. & Sato, E. (2008). Effect of cytochalasins B and D on the developmental competence of somatic cell nuclear transfer embryos in miniature pigs. Zygote 16, 153–9.CrossRefGoogle Scholar
Takeuchi, K., Sereemaspun, A., Inagaki, T., Hakamata, Y., Kaneko, T., Murakami, T., Takahashi, M., Kobayashi, E. & Ookawara, S. (2003). Morphologic characterization of green fluorescent protein in embryonic, neonatal and adult transgenic rats. Anat. Rec. A. Discov. Mol. Cell Evol. Biol. 274, 883–6.CrossRefGoogle ScholarPubMed
Tani, T., Kato, Y. & Tsunoda, Y. (2003). Reprogramming of bovine somatic cell nuclei is not directly regulated by maturation promoting factor or mitogen-activated protein kinase activity. Biol. Reprod. 69, 1890–4.CrossRefGoogle ScholarPubMed
Tomioka, I., Mizutani, E., Yoshida, T., Sugawara, A., Inai, K., Sasada, H. & Sato, E. (2007). Spindle formation and microtubule organization during first division in reconstructed rat embryos produced by somatic cell nuclear transfer. J. Reprod. Dev. 53, 835–42.CrossRefGoogle ScholarPubMed
Uhm, S.J., Gupta, M.K., Kim, T. & Lee, H.T. (2007). Expression of enhanced green fluorescent protein in porcine- and bovine-cloned embryos following interspecies somatic cell nuclear transfer of fibroblasts transfected by retrovirus vector. Mol. Reprod. Dev. 74, 1538–47.CrossRefGoogle ScholarPubMed
Wakai, T., Sugimura, S., Yamanaka, K., Kawahara, M., Sasada, H., Tanaka, H., Ando, A., Kobayashi, E. & Sato, E. (2008). Production of viable cloned miniature pig embryos using oocytes derived from domestic pig ovaries. Cloning Stem Cells 10, 249–62.CrossRefGoogle ScholarPubMed
Wakayama, T. & Yanagimachi, R. (2001). Effect of cytokinesis inhibitors, DMSO and the timing of oocyte activation on mouse cloning using cumulus cell nuclei. Reproduction 122, 4960.CrossRefGoogle ScholarPubMed
Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R. & Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–74.CrossRefGoogle ScholarPubMed
Yamanaka, K., Sugimura, S., Wakai, T., Shoji, T., Kobayashi, J., Sasada, H. & Sato, E. (2007). Effect of activation treatments on actin filament distribution and in vitro development of miniature pig somatic cell nuclear transfer embryos. J. Reprod. Dev. 53, 791800.CrossRefGoogle ScholarPubMed
Yoo, J.G., Demers, S.P., Lian, L. & Smith, L.C. (2007). Developmental arrest and cytoskeletal anomalies of rat embryos reconstructed by somatic cell nuclear transfer. Cloning Stem Cells 9, 382–93.CrossRefGoogle ScholarPubMed
Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I.M. & Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112119.CrossRefGoogle Scholar
Zhou, Q., Renard, J.P., Le Friec, G., Brochard, V., Beaujean, N., Cherifi, Y., Fraichard, A. & Cozzi, J. (2003). Generation of fertile cloned rats by regulating oocyte activation. Science 302, 1179.CrossRefGoogle ScholarPubMed
Zwaka, T.P. & Thomson, J.A. (2005). A germ cell origin of embryonic stem cells? Development 132, 227–33.CrossRefGoogle ScholarPubMed