Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T23:34:26.030Z Has data issue: false hasContentIssue false

Why Earthquakes Threaten Two Major European Cities: Istanbul and Bucharest

Published online by Cambridge University Press:  20 November 2017

Gregory A. Houseman*
Affiliation:
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK School of Geosciences, University of Sydney, NSW 2006, Australia. Email: G.A.Houseman@leeds.ac.uk

Abstract

Istanbul and Bucharest are major European cities that face a continuing threat of large earthquakes. The geological contexts for these two case studies enable us to understand the nature of the threat and to predict more precisely the consequences of future earthquakes, although we remain unable to predict the time of those events with any precision better than multi-decadal. These two cities face contrasting threats: Istanbul is located on a major geological boundary, the North Anatolian Fault, which separates a westward moving Anatolia from the stable European landmass. Bucharest is located within the stable European continent, but large-scale mass movements in the upper mantle beneath the lithosphere cause relatively frequent large earthquakes that represent a serious threat to the city and surrounding regions.

Type
Erasmus Lecture
Copyright
© Academia Europaea 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Notes and References

1. Ambraseys, N. (2009) Earthquakes in the Eastern Mediterranean and the Middle East: A Multidisciplinary Study of Seismicity up to 1900 (Cambridge: Cambridge University Press).Google Scholar
2. Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grünthal, G., Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M.B., Hiemer, S., Meletti, C., Musson, R.W., Rovida, A.N., Sesetyan, K. and Stucchi, M., the SHARE Consortium (2015) The 2013 European Seismic Hazard Model: key components and results. Bulletin of Earthquake Engineering, 13, pp. 35533596 doi: 10.1007/s10518-015-9795-1.Google Scholar
3. Dieterich, J.H. (1974) Earthquake mechanisms and modelling. Annual Review of Earth and Planetary Sciences, 2, 275301 doi: 10.1146/annurev.ea.02.050174.001423.Google Scholar
4. Thatcher, W. (1993) The earthquake cycle and its role in the long-term deformation of the continental lithosphere. Annali di Geofisica, 36, 1324.Google Scholar
5. Graves, R.W., Aagaard, B.T., Hudnut, K.W., Star, L.M., Stewart, J.P. and Jordan, T.H. (2008) Broadband simulations for M_w 7.8 southern San Andreas earthquakes: Ground motion sensitivity to rupture speed. Geophysical Research Letters, 35(22), L22302. doi: 10.1029/2008GL035750.Google Scholar
6. van der Vink, G. (2002) Earthscope: reassembling a continent in motion. Geotimes, April, pp. 1419.Google Scholar
7. Molinari, I., Clinton, J., Kissling, E., Hetényi, G., Giardini, D., Stipčević, J., Dasović, I., Herak, M., Šipka, V., Wéber, Z., Gráczer, Z. and Solarino, S., AlpArray Working Group (2016) Swiss-AlpArray temporary broadband seismic stations deployment and noise characterization. Advances in Geosciences, 43, pp. 1529 doi: 10.5194/adgeo-43-15-2016.CrossRefGoogle Scholar
8. Evison, F.F. (1977) The precursory earthquake swarm. Physics of the Earth and Planetary Interiors, 15, pp. 1923.CrossRefGoogle Scholar
9. Kumazawa, T., Ogata, Y. and Toda, S. (2010) Precursory seismic anomalies and transient crustal deformation prior to the 2008 Mw= 6.9 Iwate‐Miyagi Nairiku, Japan, earthquake. Journal of Geophysical Research, 115, B10312. doi: 10.1029/2010JB007567.Google Scholar
10. Hall, S.S. (2011) At fault? Nature, 477, pp. 264269 doi: 10.1038/477264a.Google Scholar
11. Rawlinson, N., Pozgay, S. and Fishwick, S. (2010) Seismic tomography: A window into deep Earth. Physics of the Earth and Planetary Interiors, 178, pp. 101135 doi: 10.1016/j.pepi.2009.10.002.CrossRefGoogle Scholar
12. Kreemer, C., Blewitt, G. and Klein, E.C. (2014) A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15, pp. 38493889 doi: 10.1002/2014GC005407.Google Scholar
13. Elliott, J.R., Walters, R.J. and Wright, T.J. (2016) The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nature Communications, 7, p. 13844. doi: 10.1038/ncomms13844.Google Scholar
14. Stein, R.S., Barka, A.A. and Dieterich, J.H. (1997) Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128, pp. 594604 doi: 10.1111/j.1365-246X.1997.tb05321.x.Google Scholar
15. Sieh, K., Stuiver, M. and Brillinger, D. (1989) A more precise chronology of earthquakes produced by the San Andreas Fault in Southern California. Journal of Geophysical Research, 94, pp. 603623 doi: 10.1029/JB094iB01p00603.Google Scholar
16. Barka, A., Akyüz, H.S., Altunel, E., Sunal, G., Çakir, Z., Dikbas, A., Yerli, B., Armijo, R.B., Meyer, B., de Chabalier, J.B., Rockwell, T., Dolan, J.R., Hartleb, R., Dawson, T., Christofferson, S., Tucker, A., Fumal, T., Langridge, R., Stenner, H., Lettis, W., Bachhuber, J. and Page, W. (2002) The surface rupture and slip distribution of the 17 August 1999 Izmit earthquake (M 7.4), North Anatolian Fault. Bulletin of the Seismological Society of America, 92(1), pp. 4360 doi: 10.1785/0120000841.Google Scholar
17. Pondard, N., Armijo, R., King, G.C.P., Meyer, B. and Flerit, F. (2007) Fault interactions in the Sea of Marmara pull-apart (North Anatolian Fault): earthquake clustering and propagating earthquake sequences. Geophysical Journal International, 171, pp. 11851197 doi: 10.1111/j.1365-246X.2007.03580.x.Google Scholar
18. Ambraseys, N.N. and Jackson, J.A. (2000) Seismicity of the Sea of Marmara (Turkey) since 1500. Geophysical Journal International, 141, pp. F1F6, doi: 10.1046/j.1365-246x.2000.00137.x.Google Scholar
19. Nocquet, J.M. (2012) Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics, 579, pp. 220242 doi: 10.1016/j.tecto.2012.03.037.Google Scholar
20. Floyd, M.A., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P., McClusky, S., Nocquet, J.M., Parsons, B. and England, P.C. (2010) A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean. Journal of Geophysical Research, 115, p B10403. doi: 10.1029/2009JB007040.Google Scholar
21. England, P., Houseman, G. and Nocquet, N.M. (2016) Constraints from GPS measurements on the dynamics of deformation in Anatolia and the Aegean. Journal of Geophysical Research: Solid Earth, 121, pp. 88888916 doi: 10.1002/2016JB013382.Google Scholar
22. Reilinger, R., McClusky, S., Vernant, P. et al. (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111, p B05411. doi: 10.1029/2005JB004051.Google Scholar
23. Freed, A.M. (2005) Earthquake triggering by static, dynamic, and postseismic stress transfer. Annual Review of Earth and Planetary Sciences, 33, pp. 335367, doi: 10.1146/annurev.earth.33.092203.122505.CrossRefGoogle Scholar
24. Taylor, S.K., Bull, J.M., Lamarche, G. and Barnes, P.M. (2004) Normal fault growth and linkage in the Whakatane Graben, New Zealand, during the last 1.3 Myr. Journal of Geophysical Research, 109, p B02408. doi: 10.1029/2003JB002412.CrossRefGoogle Scholar
25. Şengör, A.M.C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, E., Görür, N., Le Pichon, X. and Rangin, C. (2005) The North Anatolian Fault: A new look. Annual Review of Earth and Planetary Sciences, 33, pp. 37112, doi: 10.1146/annurev.earth.32.101802.120415.CrossRefGoogle Scholar
26. Eyidoǧan, H. (1988) Rates of crustal deformation in western Turkey as deduced from major earthquakes. Tectonophysics, 148, pp. 8392 doi: 10.1016/0040-1951(88)90162-X.Google Scholar
27. Kahraman, M., Cornwell, D.G., Thompson, D.A., Rost, S., Houseman, G.A., Türkelli, N., Teoman, U., Altuncu Poyraz, S., Utkucu, M. and Gülen, L. (2015) Crustal-scale shear zones and heterogeneous structure beneath the North Anatolian Fault Zone, Turkey, revealed by a high-density seismometer array. Earth and Planetary Science Letters, 430, pp. 129139, doi: 10.1016/j.epsl.2015.08.014.CrossRefGoogle Scholar
28. Altuncu Poyraz, S., Teoman, U., Türkelli, N., Kahraman, M., Rost, S., Houseman, G., Thompson, D., Cornwell, D., Mutlu, A.K., Cambaz, D., Utkucu, M. and Gülen, L. (2015) New constraints on micro-seismicity and stress state in the western part of the North Anatolian Fault Zone: observations from a dense seismic array. Tectonophysics, 656, pp. 190201, doi: 10.1016/j.tecto.2015.06.022.Google Scholar
29. McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S. et al. (2000) Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105(B3), pp. 56955719 doi: 10.1029/1999JB900351.Google Scholar
30. Ergintav, S., McClusky, S., Hearn, E., Reilinger, R., Cakmak, R., Herring, T., Ozener, H., Lenk, O. and Tari, E. (2009) Seven years of postseismic deformation following the 1999, M = 7.4 and M = 7.2, Izmit-Düzce, Turkey earthquake sequence. Journal of Geophysical Research, 114, p B07403. doi: 10.1029/2008JB006021.Google Scholar
31. Yamasaki, T., Wright, T.J. and Houseman, G.A. (2014) Weak ductile shear zone beneath a major strike-slip fault: Inferences from earthquake cycle model constrained by geodetic observations of the western North Anatolian Fault Zone. Journal of Geophysical Research: Solid Earth, 119, doi: 10.1002/2013JB010347.Google Scholar
32. Alcik, H., Ozelb, O., Wu, Y.M., Ozel, N.M. and Erdik, M. (2011) An alternative approach for the Istanbul earthquake early warning system. Soil Dynamics and Earthquake Engineering, 31, pp. 181187 doi: 10.1016/j.soildyn.2010.03.007.CrossRefGoogle Scholar
33. World Bank (2016) Istanbul sismik riskin azaltılması ve acil durum hazırlık projesi (ismep): başarı hikayeleri (in Turkish and English) (Washington, DC: World Bank Group). http://www.worldbank.org/en/results/2014/08/05/enhancing-seismic-preparedness-in-istanbul.Google Scholar
34. Turkish Court of Accounts (2002) How well is Istanbul getting prepared for the earthquake? http://www.sayistay.gov.tr/En/Upload/files/IstanbulEarthquake.pdf.Google Scholar
35. Tari, G., Dicea, O., Faulkerson, J., Georgiev, G., Popov, S., Stefanescu, M. and Weir, G. (1997) Cimmerian and Alpine stratigraphy and structural evolution of the Moesian Platform (Romania/Bulgaria). In A.G. Robinson, (Ed.), Regional and petroleum geology of the Black Sea and surrounding region. AAPG Memoir, 68, pp. 6390.Google Scholar
36. Hauser, F., Raileanu, V., Fielitz, W., Bala, A., Prodehl, C., Polonic, G. and Schulze, A. (2001) VRANCEA99—the crustal structure beneath the southeastern Carpathians and the Moesian Platform from a seismic refraction profile in Romania. Tectonophysics, 340, pp. 233256 doi: 10.1016/S0040-1951(01)00195-0.CrossRefGoogle Scholar
37. Ishchenko, M.V. (2016) Determination of velocities of East European stations from GNSS observations at the GNSS data analysis center of the main astronomical observatory, national academy of sciences of Ukraine. Kinematics and Physics of Celestial Bodies, 32, p 48. doi: 10.3103/S0884591316010049.Google Scholar
38. Neubauer, F. (2002) Contrasting Late Cretaceous with Neogene ore provinces in the Alpine-Balkan-Carpathian-Dinaride collision belt. In D.J. Blundell, F. Neubauer and F. von Quadt, (Eds) The Timing and Location of Major Ore Deposits in an Evolving Orogen (London: Geological Society, London, Special Publications), 204, pp. 81102.Google Scholar
39. Horváth, F., Bada, G., Szafián, P., Tari, G., Ádám, A. and Cloetingh, S. (2006) Formation and deformation of the Pannonian basin: constraints from observational data. In D. Gee and R. Stephenson, (Eds), European lithosphere dynamics. Geological Society of London Memoirs, 32, pp. 191206.Google Scholar
40. Radulian, M., Mandrescu, M., Panza, G.F., Popescu, E. and Utale, A. (2000) Characterization of seismogenic zones of Romania. Pure and Applied Geophysics, 157, pp. 5777.CrossRefGoogle Scholar
41. Böse, M., Ionescu, C. and Wenzel, F. (2007) Earthquake early warning for Bucharest, Romania: Novel and revised scaling relations. Geophysical Research Letters, 34, p L07302. doi: 10.1029/2007GL029396.Google Scholar
42. Astiz, L., Lay, T. and Kanamori, H. (1988) Large intermediate-depth earthquakes and the subduction process. Physics of the Earth and Planetary Interiors, 53, pp. 80166.CrossRefGoogle Scholar
43. Knapp, J.H., Knapp, C.C., Raileanu, V., Matenco, L., Mocanu, V. and Dinu, C. (2005) Crustal constraints on the origin of mantle seismicity in the Vrancea Zone, Romania: The case for active continental lithospheric delamination. Tectonophysics, 410, pp. 311323 doi: 10.1016/j.tecto.2005.02.020.CrossRefGoogle Scholar
44. Martin, M. and Wenzel F, F., CALIXTO Working Group (2006) High-resolution teleseismic body wave tomography beneath SE-Romania—II. Imaging of a slab detachment scenario. Geophysical Journal International, 164, 579595 doi: 10.1111/j.1365-246X.2006.02884.x.CrossRefGoogle Scholar
45. Koulakov, I., Zaharia, B., Enescu, B., Radulian, M., Popa, M., Parolai, S. and Zschau, J. (2010) Delamination or slab detachment beneath Vrancea? New arguments from local earthquake tomography. Geochemistry, Geophysics, Geosystems, 10, p Q03002. doi: 10.1029/2009GC002811.Google Scholar
46. Dando, B.D.E., Stuart, G., Houseman, G.A., Hegedűs, E., Brückl, E. and Radovanovic, S. (2011) Teleseismic tomography of the mantle in the Carpathian-Pannonian region of central Europe. Geophysical Journal International, 186, pp. 1131 doi: 10.1111/j.1365-246X.2011.04998.x.Google Scholar
47. Ren, Y., Stuart, G., Houseman, G.A., Dando, B., Ionescu, C., Hegedus, E., Radovanovic, S. and Shen, Y., South Carpathian Project Working Group (2012) Upper mantle structures beneath the Carpathian–Pannonian region: Implications for the geodynamics of continental collision. Earth and Planetary Science Letters, 349–350, pp. 139152 doi: 10.1016/j.epsl.2012.06.037.Google Scholar
48. Priestley, K. and McKenzie, D. (2006) The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters, 244, pp. 285301 doi: 10.1016/j.epsl.2006.01.008.Google Scholar
49. Bouhifid, M.A., Ardrault, D., Fiquet, G. and Richet, P. (1996) Thermal expansion of forsterite up to the melting point. Geophysical Research Letters, 10, pp. 11431146.Google Scholar
50. Morgan, W.J. (1965) Gravity anomalies and convection currents 1. A sphere and cylinder sinking beneath the surface of a viscous fluid. Journal of Geophysical Research, 70, pp. 61756187.Google Scholar
51. Pondrelli, S., Salimbeni, S., Morelli, A., Ekström, G., Postpischl, L., Vannucci, G. and Boschi, E. (2011) European–Mediterranean Regional Centroid Moment Tensor catalog: Solutions for 2005–2008. Physics of the Earth and Planetary Interiors, 185, pp. 7481 doi: 10.1016/j.pepi.2011.01.007.CrossRefGoogle Scholar
52. Michael, A.J. (1987) Use of focal mechanisms to determine stress: A control study. Journal of Geophysical Research, 92, pp. 357368.CrossRefGoogle Scholar
53. Lorinczi, P. and Houseman, G.A. (2009) Lithospheric gravitational instability beneath the Southeast Carpathians. Tectonophysics, 474, pp. 322336 doi: 10.1016/j.tecto.2008.05.024.Google Scholar
54. Jones, C.H., Reeg, H., Zandt, G., Gilbert, H., Owens, T.J. and Stachnik, J. (2014) P-wave tomography of potential convective downwellings and their source regions, Sierra Nevada, California. Geosphere, 10, 29 pp., doi: 10.1130/GES00961.1.Google Scholar
55. Russo, R.M., Mocanu, V., Radulian, M., Popa, M. and Bonjer, K.P. (2005) Seismic attenuation in the Carpathian bend zone and surroundings. Earth and Planetary Science Letters, 237, pp. 695709.Google Scholar
56. Mărmureanu, A., Ionescu, C. and Cioflan, C.O. (2011) Advanced real-time acquisition of the Vrancea earthquake early warning system. Soil Dynamics and Earthquake Engineering, 31, pp. 163169 doi: 10.1016/j.soildyn.2010.10.002.CrossRefGoogle Scholar
57. Mărmureanu, A., Elia, L., Martino, C., Colombelli, S., Zollo, A., Cioflan, C., Toader, V., Mărmureanu, G., Craiu, G.M. and Ionescu, C. (2014) Earthquake early warning for Romania – most recent improvements. Geophysical Research Abstracts, 16, EGU20149614.Google Scholar
59. Schwartz, S.Y. and Rokosky, J.M. (2007) Slow slip events and seismic tremor at circum-Pacific subduction zones. Reviews of Geophysics, 45, RG3004. doi: 10.1029/2006RG000208.Google Scholar
60. Keranen, K.M., Savage, H.M., Abers, G.A. and Cochran, E.S. (2013) Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology, 41, pp. 699702 doi: 10.1130/G34045.1.Google Scholar