Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-29T19:34:34.927Z Has data issue: false hasContentIssue false

Dark-Field Imaging of Thin Specimens with a Forescatter Electron Detector at Low Accelerating Voltage

Published online by Cambridge University Press:  28 August 2013

Nicolas Brodusch*
Affiliation:
Mining and Materials Engineering Department, McGill University, Montréal, Québec H3A 0C5, Canada
Hendrix Demers
Affiliation:
Mining and Materials Engineering Department, McGill University, Montréal, Québec H3A 0C5, Canada
Raynald Gauvin
Affiliation:
Mining and Materials Engineering Department, McGill University, Montréal, Québec H3A 0C5, Canada
*
*Corresponding author. E-mail: nicolas.brodusch@mcgill.ca
Get access

Abstract

A forescatter electron detector (FSED) was used to acquire dark-field micrographs (DF-FSED) on thin specimens with a scanning electron microscope. The collection angles were adjusted with the detector distance from the beam axis, which is similar to the camera length of the scanning transmission electron microscope annular DF detectors. The DF-FSED imaging resolution was calculated with SMART-J on an aluminum alloy and carbon nanotubes (CNTs) decorated with platinum nanoparticles. The resolution was three to six times worse than with bright-field imaging. Measurements of nanometer-size objects showed a similar feature size in DF-FSED imaging despite a signal-to-noise ratio 12 times smaller. Monte Carlo simulations were used to predict the variation of the contrast of a CNT/Fe/Pt system as a function of the collection angles. It was constant for very high collection angles (>450 mrad) and confirmed experimentally. The reverse contrast between carbon black particles and the smallest titanium dioxide (TiO2) nanoparticles was predicted by Monte Carlo simulations and observed in the DF-FSED micrograph of a battery electrode coating. However, segmentation of the micrograph was not able to isolate the TiO2 nanoparticle phase because of the close contrast of small TiO2 nanoparticles compared to the C black particles.

Type
Techniques and Instrumentation Development
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brodusch, N., Demers, H. & Gauvin, R. (2013). Nanometers-resolution Kikuchi patters from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope. J Microsc 250(1), 114.Google Scholar
Brodusch, N., Trudeau, M., Michaud, P., Rodrigue, L., Boselli, J. & Gauvin, R. (2012). Contribution of a new generation FE-SEM in the understanding of a 2099 Al-Li alloy. Microsc Microanal 18(6), 13931409.Google Scholar
Cowley, J.M. & Huang, Y. (1992). De-channelling contrast in annular dark-field STEM. Ultramicroscopy 40(2), 171180.CrossRefGoogle Scholar
Crawford, B.J. & Liley, C.R.W. (1970). A simple transmission stage using the standard collection system in the scanning electron microscope. J Phys E: Sci Instrum 3, 461462.Google Scholar
Demers, H., Poirier-Demers, N., Drouin, D. & De Jonge, N. (2010). Simulating STEM imaging of nanoparticles in micrometers-thick substrates. Microsc Microanal 16(6), 795804.CrossRefGoogle ScholarPubMed
Demers, H., Poirier-Demers, N., Réal Couture, A., Joly, D., Guilmain, M., de Jonge, N. & Drouin, D. (2011). Three-dimensional electron microscopy simulation with the Casino Monte Carlo software. Scanning 33(3), 135146.CrossRefGoogle ScholarPubMed
Forbes, B.D., d'Alfonso, A.J., Findlay, S.D., van Dyck, D., Lebeau, J.M., Stemmer, S. & Allen, L.J. (2011). Thermal diffuse scattering in transmission electron microscopy. Ultramicroscopy 111(12), 16701680.CrossRefGoogle ScholarPubMed
Giummarra, C., Thomas, B. & Rioja, R.J. (2007). New aluminum lithium alloys for aerospace applications. In Proceedings of the Third International Conference on Light Metals Technology, Sadayappan, K. & Sahoo, M. (Eds.). Ottawa, Ontario, Canada: CANMET.Google Scholar
Guise, O., Strom, C. & Prescilla, N. (2008). Evaluation of STEM-in-SEM vs. TEM for polymer applications in an industrial setting. Microsc Microanal 14(S2), 678679.Google Scholar
Halvarsson, M., Jonsson, T. & Canovic, S. (2008). Thin foil analysis in the SEM. J Phys: Conf Ser 126, 012075. Google Scholar
Haruta, M., Komatsu, H., Kurata, H., Azuma, M., Shimakawa, Y. & Isoda, S. (2008). Effects of electron channeling in HAADF intensity. In EMC 2008 14th European Microscopy Congress 1–5 September 2008, Luysberg, M., Tillmann, K. & Weirich, T. (Eds.), pp. 117118. Berlin: Springer.Google Scholar
Hondow, N., Harrington, J., Brydson, R., Doak, S.H., Singh, N., Manshian, B. & Brown, A. (2011). STEM mode in the SEM: A practical tool for nanotoxicology. Nanotoxicology 5(2), 215217.Google Scholar
Howie, A. (1979). Image contrast and localized signal selection techniques. J Microsc 117(Pt 1), 1123.Google Scholar
Hoyle, D., Malac, M., Trudeau, M. & Woo, P. (2011). UV treatment of electron microscope samples for reduced hydrocarbon contamination. In MSC-SMC 2011, 38th Annual Meeting, Geitmann, A. (Ed.), pp. 3536. Ottawa, Ontario, Canada: Microscopical Society of Canada.Google Scholar
Jesson, D.E. & Pennycook, S.J. (1995). Incoherent imaging of crystals using thermally scattered electrons. In P Roy Soc Lond Ser-A 449, 273293.Google Scholar
Joy, D.C. (2002). SMART—A program to measure SEM resolution and imaging performance. J Microsc 208, 2434.Google Scholar
Kaiser, U., Biskupek, J., Meyer, J.C., Leschner, J., Leschner, L., Rose, H., Stöger-Pollach, M., Khlobystov, A.N., Hartel, P., Müller, H., Haider, M., Eyhusen, S. & Benner, G. (2011). Transmission electron microscopy at 20 kV for imaging and spectroscopy. Ultramicroscopy 111(8), 12391246.CrossRefGoogle Scholar
Keller, R.R. & Geiss, R.H. (2012). Transmission EBSD from 10 nm domains in a scanning electron microscope. J Microsc 245(Pt 3), 245251.CrossRefGoogle Scholar
Lee, M.R. & Smith, C.L. (2006). Scanning transmission electron microscopy using a SEM: Applications to mineralogy and petrology. Mineral Mag 70(5), 579590.Google Scholar
Malis, T., Cheng, S.C. & Egerton, R.F. (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech 8(2), 193200.Google Scholar
Merli, P.G., Corticelli, F. & Morandi, V. (2002). Images of dopant profiles in low-energy scanning transmission electron microscopy. Appl Phys Lett 81(24), 45354537.Google Scholar
Merli, P.G., Migliori, A., Nacucchi, M. & Vittori Antisari, M. (1996). Comparison of spatial resolutions obtained with different signals components in scanning electron microscopy. Ultramicroscopy 65(1), 2330.Google Scholar
Merli, P.G. & Morandi, V. (2005). Low-energy STEM of multilayers and dopant profiles. Microsc Microanal 11(1), 97104.Google Scholar
Merli, P.G., Morandi, V. & Corticelli, F. (2003). Backscattered electron imaging and scanning transmission electron microscopy imaging of multi-layers. Ultramicroscopy 94(1), 8998.Google Scholar
Morandi, V. & Merli, P.G. (2007a). Contrast and resolution versus specimen thickness in low energy scanning transmission electron microscopy. J Appl Phys 101(11), 114917. Google Scholar
Morandi, V. & Merli, P.G. (2007b). Scanning electron microscopy of thinned specimens: From multilayers to biological samples. Appl Phys Lett 90(16), 163113. CrossRefGoogle Scholar
Morikawa, A., Kamiya, C., Watanabe, S., Nakagawa, M. & Ishitani, T. (2006). Low-voltage dark-field STEM imaging with optimum detection angle. Microsc Microanal 12(Suppl 2), 13681369.Google Scholar
Probst, C., Demers, H. & Gauvin, R. (2012). Spatial resolution optimization of backscattered electron images using Monte Carlo simulation. Microsc Microanal 18(3), 628637.Google Scholar
Reimer, L. (1998). Scanning Electron Microscopy—Physics of Image Formation and Microanalysis. Berlin, New York: Springer.Google Scholar
Reimer, L. & Kohl, H. (2008). Specimen damage by electron irradiation. In Transmission Electron Microscopy: Physics of Image Formation, Reimer, L. (Ed.), pp. 459490. Berlin, New York: Springer.Google Scholar
Rose, A. (1948). Television pickup tubes and the problem of noise. Adv Electron 1, 131166.Google Scholar
Soong, C., Woo, P. & Hoyle, D. (2012). Contamination cleaning of TEM/SEM samples with the ZONE cleaner. Microsc Today 20(6), 4448.Google Scholar
Sunaoshi, T., Orai, Y., Ito, H. & Ogashiwa, T. (2012). 30 kV STEM imaging with lattice resolution using a high resolution cold FE-SEM. Available at http://emc2012.org.uk/congressblog/.Google Scholar
Sussman, M. & Demopoulos, G.P. (2012). Novel fabrication of highly conductive titania/carbon electrodes for lithium-ion batteries and supercapacitors. ECS Meeting Abstracts, Honolulu, Hawaï PRIME 2012, p. 653. CrossRefGoogle Scholar
Thong, J.T.L., Sim, K.S. & Phang, J.C.H. (2001). Single-image signal-to-noise ratio estimation. Scanning 23, 328336.Google Scholar
Trimby, P.W. (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 1624.CrossRefGoogle ScholarPubMed
Van Ngo, V., Hernandez, M., Roth, B. & Joy, D.C. (2007). STEM imaging of lattice fringes and beyond in a UHR in-lens field-emission SEM. Microsc Today 15(2), 1216.Google Scholar
Yu, Z., Muller, D.A. & Silcox, J. (2008). Effects of specimen tilt in ADF-STEM imaging of a-Si/c-Si interfaces. Ultramicroscopy 108(5), 494501.Google Scholar
Supplementary material: PDF

Brodusch Supplementary Material

Supplementary Material

Download Brodusch Supplementary Material(PDF)
PDF 452.1 KB