Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-07T10:33:28.361Z Has data issue: false hasContentIssue false

Split-field versus extended-field step-and-shoot IMRT techniques in nasopharyngeal cancer: a report of acute and late toxicities

Published online by Cambridge University Press:  25 January 2021

Wimrak Onchan
Affiliation:
Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Wannapha Nobnop
Affiliation:
Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Patrinee Traisathit
Affiliation:
Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
Somvilai Chakrabandhu
Affiliation:
Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Ekkasit Tharavichitkul
Affiliation:
Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Pitchayaponne Klunklin
Affiliation:
Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Bongkot Jia-Mahasap
Affiliation:
Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
Imjai Chitapanarux*
Affiliation:
Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
*
Author for correspondence: Imjai Chitapanarux, Professor at Division of Radiation Oncology, and Chair of Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, 111 Intawarorose Road, Chiang Mai, 50200, Thailand. Tel: 6653935456. Fax: 6653935491. E-mails: imjai@hotmail.com, imjai.chitapanarux@cmu.ac.th

Abstract

Aim:

This study aimed to evaluate acute and late toxicities in nasopharyngeal cancer (NPC) patients who were treated between split-field (SF) and extended-field (EF) step-and-shoot intensity-modulated radiotherapy (IMRT) techniques.

Materials and methods:

Between January 2011 and October 2011, 21 NPC patients with stage I-IVB (7th edition American Joint Committee on Cancer Staging) were randomly assigned to undergo radiotherapy with SF or EF step-and-shoot IMRT technique.

Results:

At a median follow-up time of 60 months (range 3–77), we reported the comparable acute and late toxicities between the two techniques. One patient (9%) in SF-IMRT arm developed grade 3 acute skin toxicity.

Findings:

Both SF and EF step-and-shoot IMRT techniques for NPC patients did not produce any statistically significant differences in both acute and late toxicities. Although no difference in toxicity was observed, technical problems due to field matching management were the obstacles in utilisation of SF-IMRT in our routine practice.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ferlay, J, Soerjomataram, I, Dikshit, R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136 (5): E359E386. doi: 10.1002/ijc.29210.CrossRefGoogle ScholarPubMed
Al-Sarraf, M, Leblanc, M, Giri, P. Chemotherapy versus radiotherapy in patients with advanced nasopharyngeal carcinoma: Phase III randomized Intergroup Study 0099. J Clin Oncol 1998; 16 (4): 13101317. doi: 10.1200/JCO.1998.16.4.1310.Google ScholarPubMed
Langendijk, J A, Leemans, C R, Buter, J, Berkhof, J, Slotman, B J. The additional value of chemotherapy to radiotherapy in locally advanced nasopharyngeal carcinoma: a meta-analysis of the published literature. J Clin Oncol 2004; 22 (22): 46044612.CrossRefGoogle ScholarPubMed
Lee, A W, Lau, W H, Tung, S Y, et al. Preliminary results of a randomized study on therapeutic gain by concurrent chemotherapy for regionally-advanced nasopharyngeal carcinoma: NPC-9901 Trial by the Hong Kong Nasopharyngeal Cancer Study Group. J Clin Oncol 2005; 23 (28): 69666975.CrossRefGoogle Scholar
Lee, A W M, Sze, W M, Au, J S K, et al. Treatment results for nasopharyngeal carcinoma in the modern era: the Hong Kong experience. Int J Radiat Oncol Biol Phys 2005; 61 (4): 11071116.CrossRefGoogle ScholarPubMed
Eisbruch, A, Kim, H M, Terrell, J E, Marsh, L H, Dawson, L A, Ship, J A. Xerostomia and its predictors following parotid-sparing irradiation of head-and-neck cancer. Int J Radiat Oncol Biol Phys 2001; 50 (3): 695704.CrossRefGoogle ScholarPubMed
Eisbruch, A, Marsh, L H, Martel, M K, et al. Comprehensive irradiation of head and neck cancer using conformal multisegmental fields: assessment of target coverage and noninvolved tissue sparing. Int J Radiat Oncol Biol Phys 1998; 41 (3): 559568.CrossRefGoogle ScholarPubMed
Hunt, M A, Zelefsky, M J, Wolden, S, et al. Treatment planning and delivery of intensity-modulated radiation therapy for primary nasopharynx cancer. Int J Radiat Oncol Biol Phys 2001; 49 (3): 623632.10.1016/S0360-3016(00)01389-4CrossRefGoogle ScholarPubMed
Kam, M K, Chau, R M, Suen, J, Choi, P H, Teo, P M. Intensity-modulated radiotherapy in nasopharyngeal carcinoma: dosimetric advantage over conventional plans and feasibility of dose escalation. Int J Radiat Oncol Biol Phys 2003; 56 (1): 145457.CrossRefGoogle ScholarPubMed
Nutting, C. Intensity-modulated radiotherapy (IMRT): the most important advance in radiotherapy since the linear accelerator? Br J Radiol 2003; 76 (910): 673.CrossRefGoogle ScholarPubMed
Alaei, P, Higgins, P D, Weaver, R, Nguyen, N. Comparison of dynamic and step-and-shoot intensity-modulated radiation therapy planning and delivery. Med Dosim 2004; 29 (1): 16.10.1016/j.meddos.2003.10.002CrossRefGoogle ScholarPubMed
Martens, C, De Gersem, W, De Neve, W, De Wagter, C. Combining the advantages of step-and-shoot and dynamic delivery of intensity-modulated radiotherapy by interrupted dynamic sequences. Int J Radiat Oncol Biol Phys 2001; 50 (2): 541550.CrossRefGoogle ScholarPubMed
Zeng, G G, Heaton, R K, Catton, C N, et al. A two isocenter IMRT technique with a controlled junction dose for long volume targets. Phys Med Biol 2007; 52 (15): 45414552.10.1088/0031-9155/52/15/012CrossRefGoogle ScholarPubMed
Dabaja, B, Salehpour, M R, Rosen, I, et al. Intensity-modulated radiation therapy (IMRT) of cancers of the head and neck: comparison of split-field and whole-field techniques. Int J Radiat Oncol Biol Phys 2005; 63 (4): 10001005.CrossRefGoogle Scholar
Amdur, R J, Li, J G, Liu, C, Hinerman, R W, Mendenhall, W M. Unnecessary laryngeal irradiation in the IMRT era. Head Neck 2004; 26 (3): 257263; discussion 63–64.CrossRefGoogle ScholarPubMed
Edge, S B, American Joint Committee on C, American Cancer S. AJCC Cancer Staging Handbook: From the AJCC Cancer Staging Manual. New York: Springer, 2010.Google Scholar
Lee, N, Harris, J, Garden, A S, et al. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J Clin Oncol 2009; 27 (22): 36843690.CrossRefGoogle ScholarPubMed
Common terminology criteria for adverse events : (CTCAE). v4.03. ed. [Bethesda, Md.] : U.S. Department of Health and Human Services; 2010.Google Scholar
Cox, J D, Stetz, J, Pajak, T F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 1995; 31 (5), 13411346.10.1016/0360-3016(95)00060-CCrossRefGoogle Scholar
Lee, N, Mechalakos, J, Puri, D R, Hunt, M. Choosing an intensity-modulated radiation therapy technique in the treatment of head-and-neck cancer. Int J Radiat Oncol Biol Phys 2007; 68 (5): 12991309.10.1016/j.ijrobp.2006.11.019CrossRefGoogle ScholarPubMed
Yu, Y, Chen, J, Leary, C I, Shugard, E, Yom, S S. Split-field vs extended-field intensity-modulated radiation therapy plans for oropharyngeal cancer: which spares the larynx? Which spares the thyroid? Med Dosim 2016; 41 (2): 148153.CrossRefGoogle ScholarPubMed
Turaka, A, Li, T, Nicolaou, N, et al. Use of a conventional low neck field (LNF) and intensity-modulated radiotherapy (IMRT): no clinical detriment of IMRT to an anterior LNF during the treatment of head-and neck-cancer. Int J Radiat Oncol Biol Phys 2011; 79 (1): 6570.10.1016/j.ijrobp.2009.10.034CrossRefGoogle Scholar
Peng, G, Wang, T, Yang, K Y, et al. A prospective, randomized study comparing outcomes and toxicities of intensity-modulated radiotherapy vs. conventional two-dimensional radiotherapy for the treatment of nasopharyngeal carcinoma. Radiother Oncol 2012; 104 (3): 286293.CrossRefGoogle ScholarPubMed
Chen, L, Hu, C S, Chen, X Z, et al. Concurrent chemoradiotherapy plus adjuvant chemotherapy versus concurrent chemoradiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 3 multicentre randomised controlled trial. Lancet Oncol 2012; 13 (2): 163171.CrossRefGoogle ScholarPubMed
Ou, X, Zhou, X, Shi, Q, et al. Treatment outcomes and late toxicities of 869 patients with nasopharyngeal carcinoma treated with definitive intensity modulated radiation therapy: new insight into the value of total dose of cisplatin and radiation boost. Oncotarget 2015; 6 (35): 3838138397.CrossRefGoogle ScholarPubMed
Ng, W T, Lee, M C, Hung, W M, et al. Clinical outcomes and patterns of failure after intensity-modulated radiotherapy for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2011; 79 (2): 420428.CrossRefGoogle ScholarPubMed
Lee, N, Xia, P, Quivey, J M, et al. Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol Phys 2002; 53 (1): 1222.10.1016/S0360-3016(02)02724-4CrossRefGoogle ScholarPubMed
Kam, M K, Teo, P M, Chau, R M, et al. Treatment of nasopharyngeal carcinoma with intensity-modulated radiotherapy: the Hong Kong experience. Int J Radiat Oncol Biol Phys 2004; 60 (5): 14401450.CrossRefGoogle ScholarPubMed
Wu, S, Xie, C, Jin, X, Zhang, P. Simultaneous modulated accelerated radiation therapy in the treatment of nasopharyngeal cancer: a local center’s experience. Int J Radiat Oncol Biol Phys 2006; 66 (4): S40S46.CrossRefGoogle Scholar
Wolden, S L, Chen, W C, Pfister, D G, Kraus, D H, Berry, S L, Zelefsky, M J. Intensity-modulated radiation therapy (IMRT) for nasopharynx cancer: update of the Memorial Sloan-Kettering experience. Int J Radiat Oncol Biol Phys 2006; 64 (1): 5762.CrossRefGoogle ScholarPubMed
Wang, R, Wu, F, Lu, H, et al. Definitive intensity-modulated radiation therapy for nasopharyngeal carcinoma: long-term outcome of a multicenter prospective study. J Cancer Res Clin Oncol 2013; 139 (1): 139145.CrossRefGoogle ScholarPubMed
Zhang, W, Dou, H, Lam, C, et al. Concurrent chemoradiotherapy with or without adjuvant chemotherapy in intermediate and locoregionally advanced nasopharyngeal carcinoma. Tumour Biol 2013; 34 (3): 17291736.CrossRefGoogle ScholarPubMed
Tham, I W, Hee, S W, Yeo, R M, et al. Treatment of nasopharyngeal carcinoma using intensity-modulated radiotherapy-the national cancer centre singapore experience. Int J Radiat Oncol Biol Phys 2009; 75 (5): 14811486.10.1016/j.ijrobp.2009.01.018CrossRefGoogle ScholarPubMed
Wong, F C, Ng, A W, Lee, V H, et al. Whole-field simultaneous integrated-boost intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2010; 76 (1): 138145.CrossRefGoogle ScholarPubMed
Kwong, D L, Sham, J S, Leung, L H, et al. Preliminary results of radiation dose escalation for locally advanced nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2006; 64 (2): 374381.10.1016/j.ijrobp.2005.07.968CrossRefGoogle ScholarPubMed
Lee, S W, Back, G M, Yi, B Y, et al. Preliminary results of a phase I/II study of simultaneous modulated accelerated radiotherapy for nondisseminated nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2006; 65 (1): 152160.CrossRefGoogle ScholarPubMed
Chitapanarux, I, Nobnop, W, Sripan, P, et al. The outcome of the first 100 nasopharyngeal cancer patients in Thailand treated by helical tomotherapy. Radiol Oncol 2017; 51 (3): 351356.CrossRefGoogle ScholarPubMed