Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-13T21:09:18.340Z Has data issue: false hasContentIssue false

Microstructure and Morphology of Thermotropic Amphiphilic Liquid Crystalline Materials

Published online by Cambridge University Press:  10 February 2011

Hee-Tae Jung
Affiliation:
Department of Chemical Engineering and Materials, University of California, Santa Barbara, CA 93106-5080, heetae@engineering.ucsb.edu
Steven D. Hudson
Affiliation:
Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH. 44106
Virgil Percec
Affiliation:
Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH. 44106
Get access

Abstract

Electron microscopy methods have been used to investigate the structure and morphology of a hexagonal columnar mesophase, formed by novel amphiphilic and dendrimeric liquid crystals. Alignment of the columns is examined by a surface condition that is suitable for the molecular architecture. For all the materials investigated, columns aligned perpendicular to an evaporated carbon surface. In the case of asymmetric amphiphilic compounds, planar alignment of asymmetric compounds was induced by a water surface. However, planar alignment on water was not possible for a symmetric dendrimer. Based on analysis of electron diffraction and images, the dimension and the stiffness of columnar assemblies is found to depend on molecular architecture.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Klug, A., Angew. Chem. Int. Ed. Engl. 22, 565 (1983).Google Scholar
2 Suarez, M., Lehn, J.-M., Zimmerman, S. C., Skoulios, A. and Heinrich, B., J. Am. Chem. Soc. 120, 9526 (1998).Google Scholar
3 Percec, V., Heck, J., Johansson, G. and Tomazos, D., Macromol. Symp. 77, 237 (1994).Google Scholar
4 Whitesides, G. M., Mathias, J. P. and Seto, C. T., Science 254, 1312 (1991).Google Scholar
5 Whitesides, G. M., Simanek, E. M., Mathias, J. P., Seto, C. T., Chin, D. N., Mammen, M. and Gorman, D. M., Acc. Chem. Res. 28, 37 (1995).Google Scholar
6 Percec, V., Schlueter, D., Ungar, G., Cheng, S. Z. D. and Zhang, A., Macromolecules 31, 1745 (1998).Google Scholar
7 Percec, V. and Johansson, G., Macromol. Symp. 96, 173 (1995).Google Scholar
8 Johansson, G., Percec, V., Ungar, G. and Zhou, J.P., Macromolecules 29, 646 (1996).Google Scholar
9 Percec, V., Johansson, G., Ungar, G. and Zhou, J., J. Am. Chem. Soc. 118, 9855 (1996).Google Scholar
10 Borisch, K., Diele, S., Goring, P., Muller, H., and Tschierske, C., Liq. Cryst. 22, 427 (1997).Google Scholar
11 Adam, D., Schuhmacher, P., Simmerer, J., Haussling, L., Siemensmeyer, K., Etzbach, K. H., Ringsdoif, H., Haarer, D., Nature 371, 141 (1994).Google Scholar
12 Gankema, H., Hempenius, M. A., Moller, M., Johansson, G., Percec, V., Macromol. Symp. 102, 381 (1996).Google Scholar
13 Hudson, S. D., Jung, H.-T., Percec, V., Cho, W.-D., Johansson, G., Ungar, G., Balagurusamy, V. S. K., Science 278, 449 (1997).Google Scholar
14 Percec, V., Moiser, P., Ungar, G., Balagurusamy, V. S. K., in preparation.Google Scholar
15 Martin, D. C. and Thomas, E. L., Polymer 36, 1743 (1995).Google Scholar
16 Jung, H.-T., Hudson, S. D., Lenz, R. W., Macromolecules 31,637 (1998).Google Scholar
17 Sawyer, L. C., Grubb, D. T., Polymer Microscopy (Chapman and Hall, New York, 1987).Google Scholar