Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-01T05:43:42.015Z Has data issue: false hasContentIssue false

Bonding Regeneration: The Driving Force of Hetero-Epitaxial Diamond Grain Coalescence on (001) Silicon

Published online by Cambridge University Press:  10 February 2011

R.Q. Zhang
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
X. Jiang
Affiliation:
Fraunhofer-Institut fuer Schicht- und Oberflaechentechnik (FhG-IST), Bienroder Weg 54 E, D-38108 Braunschweig, Germany
C.L. Jia
Affiliation:
Institut fuer Festkorperforschung, Forschungszentrum Julich GmbH, D-52425 Julich, Germany
S.-T. Lee
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Get access

Abstract

The grain coalescence phenomenon in the growth of heteroepitaxial diamond film on (001) silicon substrate by microwave plasma chemical vapor deposition was examined by using high-resolution electron microscopy. It was shown that this phenomenon evidently occurs between two diamond grains with a small-angle tilt. The coalescence was completed after some more growth steps following the meeting of such two grains, indicating the difficulty for the lattice matching in grain boundary. By performing simulation of a step-by-step growth of two diamond grains on a (001) silicon substrate with molecular orbital PM3 method, it was shown that the bonding regeneration between the two grains is essential for the coalescence and the coalescence is only possible when the orientation difference between the grains is sufficiently small so as to allow efficient overlap of electron cloud in the grain boundary. This study indicates that single crystal diamond growth may be possible by the current CVD growth techniques via further reduction of the surface roughness to gain a heteroepitaxy with very small grain tilting.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Spitsyn, B.V., Bouilov, L.L. and Derjaguin, B.V., J. Cryst. Growth 52, 219 (1981).Google Scholar
2 Yoshikawa, M., Ishida, H., Ishitani, A., Murakami, T., Koizumi, S. and Inuzuka, T., Appl. Phys. Lett. 57, 428 (1990).Google Scholar
3 Stoner, B.R., and Glass, J.T., Appl. Phys. Lett. 60, 698(1992); B.R. Stoner, G.H.M. Ma, S.D. Wolter and J.T. Glass, Phys. Rev. B45, 11067 (1992).Google Scholar
4 Jiang, X. and Klages, C.-P., Diamond Relat. Mater. 2, 1112 (1993).Google Scholar
5 Jiang, X., Klages, C.-P., Zachai, R., Hartweg, M. and Fiisser, H.-J., Appl. Phys. Lett. 62, 3438 (1993).Google Scholar
6 Jiang, X., Klages, C.-P., Rösler, M., Zachai, R., Hartweg, M. and Fisser, H.-J., Appl. Phys. A 57, 483 (1993).Google Scholar
7 Wolter, S.D., Stoner, B.R. and Glass, J.T., Ellis, P.J., Buhaenko, D.S., Jenkins, C.E. and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).Google Scholar
8 Chen, Q.J., Yang, J. and Lin, Z.D., Appl. Phys. Lett. 67, 1853(1995); Q.J.Chen, Y.Chen, J. Yang and Z.D.Lin, Thin Solid Films 274, 160 (1996).Google Scholar
9 Song, S.G., Chen, C.L., Mitchell, T.E., Hackenberger, L.B. and Messier, R., J. Appl. Phys. 79, 1813 (1996).Google Scholar
10 Jubber, M.G. and Milne, D.K., Phys. Stat. Sol. (a) 154, 185 (1996).Google Scholar
11 Schreck, M. and Stritzker, B., Phys. Stat. Sol. (a) 154, 197 (1996).Google Scholar
12 Kaenel, Y. Von, Stiegler, J., Blank, E., Chauvet, O., Hellwig, Ch. and Plamann, K., Phys. Stat. Sol. (a) 154, 219 (1996).Google Scholar
13 Chen, C.J., Chang, L., Lin, T.S. and Chen, F.R., J. Mater. Res. 11, 1002 (1996).Google Scholar
14 Angus, J.C. and Hayman, C.C., Science 241, 913 (1988).Google Scholar
15 Collins, A.T., Semicond. Sci. Technol. 4, 605 (1989).Google Scholar
16 Yarbrough, W.A. and Messier, R., Science 247, 688 (1990).Google Scholar
17 Jiang, X. and Jia, C.L., Appl. Phys. Letters 69, 3902 (1996).Google Scholar
18 Jiang, X. and Jia, C.L., J. Appl. Phys. 83 (5), 2511 (1998).Google Scholar
19 Jiang, X. and Jia, C.L., Appl. Phys. Lett. 67, 1197 (1995).Google Scholar
20 Jia, C.L., Urban, K. and Jiang, X., Phys. Rev. B52, 5164 (1995).Google Scholar
21 Chen, Q.J., Wang, L.X., Zhang, Z., Yang, J., Lin, Z.D., Appl. Phys. Lett. 68, 176 (1996).Google Scholar
22 Tucker, D.A., Seo, D.-K., Whangbo, M.-H., Sivazlian, F.R., Stoner, B.R., Bozeman, S.P., Sowers, A.T., Nemanich, R.J. and Glass, J.T., Surf. Sci. 334, 179 (1995).Google Scholar
23 Jiang, X. and Klages, C.-P., Phys. Status Solidi A 154, 175 (1996).Google Scholar
24 Stewart, J.J.P., J. Comput. Chem. 2, 209 (1989).Google Scholar
25 Dewar, M.J.S. and Thiel, W.J., J. Am. Chem. Soc. 99, 4899 (1977).Google Scholar
26 Zhang, R.Q., Wang, W.L., Esteve, J. and Bertran, E., Appl. Phys. Lett 69, 1086 (1996).Google Scholar
27 Zhang, R.Q., Wang, W.L., Esteve, J. and Bertran, E., Thin Solid Film, in press; and their following work.Google Scholar
28 Jiang, X., Zhang, R.Q., Yu, G. and Lee, S.T., unpubmitted.Google Scholar