Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T23:11:40.752Z Has data issue: false hasContentIssue false

Influence of Silicon on Bainite Transformation in Ductile Iron; Relation to Mechanical Properties

Published online by Cambridge University Press:  21 February 2011

H. Nieswaag
Affiliation:
Laboratorium voor Metaalkunde, Delft University of Technology, The Netherlands
J. W. Nijhof
Affiliation:
Laboratorium voor Metaalkunde, Delft University of Technology, The Netherlands
Get access

Abstract

Using a dilatometer the isothermal transformation of austenite to bainite has been studied in ductile cast iron with 0.05 % Mn and a silicon content varying from 2.4 to 3.8 %. The alloys were austenitized to a carbon content in the matrix of 0.65 %. It appears that silicon retards the formation of carbides in the upper bainite region (400 °C), resulting in an amount of retained austenite up to 40 % present in the final structure at room temperature. Silicon improves the strength; in the lower bainite region the yield strength in particular. An elongation up to 10 % or more is obtained after austempering at 400 0C independent of the silicon content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hughes, I.C.H. - Br. Foundryman, 74 (1981), pp. 229245.Google Scholar
2. Luijendijk, T., Nieswaag, H. - The influence of silicon on the toughness of bainitic ductile iron -50th Int. Foundry Congress, Cairo, 1983; paper no. 9.Google Scholar
3. Speidel, M.O., Uggowitzer, P. - Fracture toughness of cast materials -51st Int. Foundry Congress, Lisboa, 1984; paper no. 28.Google Scholar
4. Speidel, M.O. - Z. Werkstofftechnik, 12 (1981), pp. 387402.10.1002/mawe.19810121106Google Scholar
5. Schürmann, E., Hirsch, J. von - Giesserei, 53 (1966), pp. 398400.Google Scholar
6. Bhadeshia, H.K.D.H., Edmonds, D.V. - Metal Science, 17 (1983), pp. 411419.10.1179/030634583790420600Google Scholar
7. Pomey, J. Mëm. Scient. Rev. Met., 63 (1966), pp. 509532.Google Scholar
8. Vigneron, B., Schissler, J.M., Faivre, R. - Hommes et Fonderie, Oct. 1977, pp. 17–34.Google Scholar
9. Bakkerus, H., Holst, B.J. v.d. - Modern Castings, 71 (1981), No. 3, pp. 4144.Google Scholar
10. Veselova, S.I., Spektor, Y.E.Z. - Fiz. Metal. Metalloved, 34 (1972), No. 4, pp. 895896.Google Scholar
11. Cockett, G.H., Davis, C.D. - J. Iron Steel Inst., (1963), pp. 110115.Google Scholar
12. Dorazil, E., Barta, B. Münsterova, E. - Giessereitechnik, 19 (1973), pp. 7983.Google Scholar
13. Johansson, M. - AFS Trans., 85 (1977), pp. 117122.Google Scholar
14. Cullity, B.D. - Elements of X-ray diffraction. 2nd ed. 1978; pp. 411–415.Google Scholar
15. Kaufmann, L., Clougherty, E.V., Weiss, R.J. - Acta Met., 11 (1963), p. 323.10.1016/0001-6160(63)90157-3Google Scholar
16. Rundman, K.B., Klug, R.C. - AFS Trans., 90 (1982), pp. 499508.Google Scholar