Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-16T03:26:03.744Z Has data issue: false hasContentIssue false

A Comparative Study of GaN Epitaxy on Si(001) and SI(111) Substrates

Published online by Cambridge University Press:  25 February 2011

T. Lei
Affiliation:
Department of Physics, Boston University, Boston, MA 02215.
T. D. Moustakas
Affiliation:
Department of Electrical Engineering and Department of Physics, Boston University, Boston, MA 02215.
Get access

Abstract

Epitaxial GaN films were grown on Si(001) and (111) substrates, using a two-step process. The films on Si(001) are single crystalline having the zincblende strucutrue, while those on Si(111) have the wurtzite structure. The crystalline qualities of the films were studied by X-ray diffraction. While the zincblende GaN has a perfect cubic structure, the wurtzitic GaN on Si(111) has a considerable amount of stacking faults along (0002) direction, which gives rise to significant zincblende component with (111) orientation. Room temperature resistivity for both type of GaN films was found to be larger than 100 Ω· cm. The temperature dependence of th resistivity gives a defect level at HOmeV for wurtzitic GaN and 80meV for cubic GaN. Optical studies show that GaN on Si(001) has a gap 3.2eV, and GaN on Si(111) has a gap of 3.4eV at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pankove, J. I., MRS Symposium Proceedings, V162, 515(1990).Google Scholar
2. Davis, R. F., Proceedings of the IEEE., V. 79, No. 5, 702(1991);CrossRefGoogle Scholar
Davis, R. F., Sitar, Z., Williams, B. E., Kong, H. S., Kim, H. J., Palmour, J. W., Edmond, J. A., Ryu, J., Glass, J. T. and Carter, C. H. Jr, Mat. Sci. & Eng. Bl, 77 (1988).Google Scholar
3. Paisley, M. J., Sitar, Z., Posthil, J. B. and Davis, R. F., J. Vac. Sci. Tech., 7, 701(1989).CrossRefGoogle Scholar
4. Powell, R. C., Tomasch, G. A., Kim, Y. W., Thornton, J. A. and Greene, J. E., MRS Symposium Proceedings, V162, 525(1990).Google Scholar
5. Mizuta, M., Fujieda, S., Matsumoto, Y. and Kawamura, T., Japanese J. Appl. Phys. 25, L945(1986).CrossRefGoogle Scholar
6. Strite, S., Ruan, J., Li, Z., Manning, N., Salvador, A., Chen, H., Smith, D. J., Choyke, W. J. and Morkoc, H., J. Vac. Sci. Technol. B9, 1924 (1991).CrossRefGoogle Scholar
7. Lei, T., Fanciulli, M., Molnar, R. J., Moustakas, T. D., Graham, R. J., and Scanlon, J., Appl. Phys. Lett., 58, 944(1991).Google Scholar
8. Lei, T., Moustakas, T. D., He, Y. and Berkowitz, S. J., J. Appl. Phys., 71 (10), May 15(1992).Google Scholar
9. Morimoto, Y., Uchiho, K. and Ushio, S., J. Electrochem. Soc: Solid-State Sci. and Tech., 120, 1783(1973).Google Scholar
10. Butter, E., Fitzi, G., Hirsch, D., Leonhardt, G., Seifert, W. and Preschel, G., Thin Solid Films, 59, 25(1979).Google Scholar
11. Sitar, Z., Paisley, M. J., Yan, B. and Davis, R. F., MRS Symposium Proceedings, V162, 537(1990).Google Scholar
12. Busing, W. R. and Levy, H. A., Acta Cryst. 22, 4579(1967).Google Scholar
13. Warren, B. E., X-ray diffraction, Addison-Welsley Publ. Company, Inc. (1969).Google Scholar
14. Kittle, C., Introduction to Solid State Physics, John Wiley & Sons. Inc., (1956).Google Scholar
15. Lei, T., Ludwig, K. F. Jr and Moustakas, T. D., to be published.Google Scholar