Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T17:53:10.378Z Has data issue: false hasContentIssue false

Characterization of HDS and Syngas Catalysts Derived from Heterobimetallic Clusters

Published online by Cambridge University Press:  28 February 2011

M. D. Curtis
Affiliation:
Departments of Chemistry and Chemical Engineering
J. Schwank
Affiliation:
The University of Michigan, Ann Arbor, MI 48109–1055
J. Penner-Hahn
Affiliation:
Departments of Chemistry and Chemical Engineering
L. Thompson
Affiliation:
The University of Michigan, Ann Arbor, MI 48109–1055
O. Baralt
Affiliation:
Departments of Chemistry and Chemical Engineering
G. Waldo
Affiliation:
Departments of Chemistry and Chemical Engineering
Get access

Abstract

Discrete, organometallic clusters containing S, Mo, and Fe or Co have been deposited intact on metal oxide supports. These supported clusters are subjected to temperature programmed decomposition (TPDE) which causes loss of the organic ligands and produces catalysts active for CO hydrogenation and thiophene hydrodesulfurization (HDS). In-situ Mossbauer spectra reveal that the surface is remarkably uniform and that high spin ferrous iron is the predominate species (ca. 90%) under catalytic reaction conditions. EXAFS and XANES spectra show that the clusters are irreversibly oxidized by the surface at ca. 400 K under H2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Furminsky, E., Cat. Rev. 22, 371 (1980);(b) P. Ratnasamy and S. Sivisanker, Cat. Rev. 22, 401 (1980); (c) P. Grange, Cat. Rev. 21, 135 (1980).Google Scholar
2. (a) Alstrup, I., Chockendorff, I., Candia, R., Clausen, B. S., and Topsoe, H., J. Catal. 77, 397 (1982);(b) C. Wivel, R. Candia, B. S. Calusen, S. Morup, and H. Topsoe, J. Catal. 68, 453 (1981); (c) H. Topsoe, B. S. Clausen, R. Candia, C. Wivel, and S. Morup, J. Catal. 68, 443 (1981).CrossRefGoogle Scholar
3. (a) Boudart, M., DallaBetta, R. A., Foger, K., and Loffler, D. G., Springer Proc. Phys. 2, 187 (1984);(b) B. Clausen, H. Topsoe, R. Candia, B. Langeler, Springer Proc. Phys. 2, 181 (1984); (c) B. S. Clausen, H. Topsoe, R. Candia, J. Villadsen, B. Langeler, J. Als-Nielsen, and F. Christensen, J. Phys. Chem. 85, 3868 (1981).CrossRefGoogle Scholar
4. Chianelli, R. R., Pecoraro, T., Halbert, T. R., Pan, W.-H., and Stiefel, E. I., J. Catal. 86, 226 (1984).Google Scholar
5. (a) Curtis, M. D. and Williams, P. D., Inorg. Chem. 22, 2661 (1983);(b) P. D. Williams, M. D. Curtis, D. N. Duffy, and W. M. Butler, Organometallics 2, 165 (1983).CrossRefGoogle Scholar