Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T16:27:11.034Z Has data issue: false hasContentIssue false

Assessing electronic properties of desymmetrized heterocyclic patterns: towards tuning small molecules for photovoltaic applications

Published online by Cambridge University Press:  27 November 2020

Oscar González-Antonio
Affiliation:
Facultad de Química, Departamento de Química Orgánica. Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510 Ciudad de México, México.
Rebeca Yépez
Affiliation:
Departamento de Química. Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV. Apdo. Postal 14-740, 07000 Ciudad de México, México.
María Magdalena Vázquez-Alvarado
Affiliation:
Facultad de Química, Departamento de Química Orgánica. Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510 Ciudad de México, México.
Blas Flores-Pérez
Affiliation:
Facultad de Química, Departamento de Química Orgánica. Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510 Ciudad de México, México.
Norberto Farfán*
Affiliation:
Facultad de Química, Departamento de Química Orgánica. Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510 Ciudad de México, México.
Carlos Amador-Bedolla
Affiliation:
Facultad de Química, Departamento de Física y Química Teórica. Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510 Ciudad de México, México
Margarita Romero-Ávila*
Affiliation:
Facultad de Química, Departamento de Química Orgánica. Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510 Ciudad de México, México.
Rosa Santillan*
Affiliation:
Facultad de Química, Departamento de Química Orgánica. Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510 Ciudad de México, México.
Get access

Abstract

A series of highly attainable desymmetrized heterocyclic compounds with Donor-Acceptor-Donor-Acceptor-X (D-A-D-X) architectures were synthesized. The structures, where X corresponds to a heteroaromatic portion (pyridine, ferrocene, thiadiazolopyridine), were designed through computational analysis. Molecular geometries for all compounds were studied and parameters of charge transfer were computed in order to analyse the behaviour in each architecture. Spectroscopic properties (maximum absorption wavelengths, extinction coefficients and HOMO-LUMO gaps) were predicted and measured experimentally. UV-Vis absorption profiles and values of HOMO-LUMO optical gaps (in the vicinity of 2.0 eV), together with the computational results, are properties that position the obtained systems, as potential candidates for developing efficient photovoltaic materials based on synthetically accessible small organic molecules.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

IEA (2019), World Energy Outlook 2019, OECD Publishing, Paris, https://doi.org/10.1787/caf32f3b-en.Google Scholar
Scharber, M. C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A. J., Brabec, C. J., Adv. Mater. 2006, 18, 789794.CrossRefGoogle Scholar
Kleinhenz, N., Yiang, L., Zhou, H., Price, S. C., You, W., Macromolecules 44, 872877 (2011).CrossRefGoogle Scholar
Nelson, J., Mater. Today 14, 462-470 (2011).CrossRefGoogle Scholar
Liang, Y., Yu, L., Acc. Chem. Res. 43, 12271236 (2010).CrossRefGoogle Scholar
Wen, W., Ying, L., Hsu, B. B. Y., Zhang, Y., Nguyen, T.C., Bazan, G. C., Chem. Commun. 49, 7192-7194 (2013).CrossRefGoogle Scholar
Chen, Z., Yan, L., Rech, J. J., Hu, J., Zhang, Q., You, W., ACS Appl. Polym. Mater. 1, 804814 (2019).Google ScholarPubMed
Chen, J., Cao, Y., Acc. Chem. Res. 42, 17091718 (2009).CrossRefGoogle Scholar
Li, Q., Shi, J., Li, H., Li, S., Zhong, C., Guo, F., Peng, M., Hua, J., Qin, J., Li, Z., J. Mater. Chem. 22, 6689-6696 (2012).CrossRefGoogle Scholar
Jiang, D., Chen, S., Xue, Z., Li, Y., Liu, H., Yang, W., Li, Y., Dyes Pigm. 125, 100-105 (2015).CrossRefGoogle Scholar
Bulut, I., Chavez, P., Mirloup, A., Huaulmé, Q., Hébraud, A., Heinrich, B., Fall, S., Méry, S., Ziessel, R., Heiser, T., Lévêque, P., Leclerc, N., J. Mater. Chem. C 4, 4296-4303 (2016).CrossRefGoogle Scholar
Keshtov, M. L., Khokhlov, A. R., Kuklin, S. A., Nikolaev, A. Y., Koukaras, E. N., Sharma, G. D., J. Polym. Sci. Part A: Polym. Chem. 56, 376-386 (2018).CrossRefGoogle Scholar
Shi, S., Chen, P., Chen, Y., Feng, K., Liu, B., Chen, J., Liao, Q., Tu, B., Luo, J., Su, M., Guo, H., Kim, M. G., Facchetti, A., Guo, X., Adv.Mater. 31, 1905161-1905170 (2019).CrossRefGoogle Scholar
Zhou, H., Yiang, L., You, W., Macromolecules 45, 607632 (2012).CrossRefGoogle Scholar
Ma, Z., Wang, E., Jarvid, M. E., Henriksson, P., Inganäs, O., Zhang, F., Andersson, M. R., J. Mater. Chem. 22, 2306-2314 (2012).CrossRefGoogle Scholar
Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., Yip, H. L., Cao, Y., Chen, Y., Science 361, 10941098 (2018).CrossRefGoogle Scholar
Ameri, T., Dennler, G., Lungenschmied, C., Brabec, C. J., Energy Environ. Sci. 2, 347363 (2009).CrossRefGoogle Scholar
Yoo, S. H., Kum, J. M., Cho, S. O., Nanoscale Res. Lett. 6, 545-551 (2011).CrossRefGoogle Scholar
Kooistra, F. B., Knol, J., Kastenberg, F., Popescu, L. M., Verhees, W. J. H., Kroon, J. M., Hummelen, J. C., Org. Lett. 9, 551-554 (2007).CrossRefGoogle Scholar
Scharber, M. C., Sariciftci, N. S., Prog. Polym. Sci. 38, 1929-1940 (2013).CrossRefGoogle Scholar
Hachmann, J., Olivares-Amaya, R., Atahan-Evrenk, S., Amador-Bedolla, C., Sánchez-Carrera, R. S., Gold-Parker, A., Vogt, L., Brockway, A. M., Aspuru-Guzik, A., J. Phys. Chem. Lett. 2, 22412251 (2011).CrossRefGoogle Scholar
Ying, W., Zhang, X., Li, X., Wu, W., Guo, F., Li, J., Agren, H., Hua, J., Tetrahedron 70, 3901-3908 (2014).CrossRefGoogle Scholar
Bolshakov, O. I., Grishina, M. A., Galushko, A., Potemkin, V. A., Rakitin, O. A., J. Chem. 2015, 1-8 (2015).CrossRefGoogle Scholar
Gautam, P., Misra, R., Siddiqui, S. A., Sharma, G. D., ACS Appl. Mater. Interfaces 7, 1028310292 (2015).CrossRefGoogle Scholar
Heiskanen, J. P., Vivo, P., Saari, N. M., Hukka, T. I., Kastinen, T., Kaunisto, K., Lemmetyinen, H. J., Hormi, O. E. O., J. Org. Chem. 81, 15351546 (2016).CrossRefGoogle Scholar
Sifuentes-Vázquez, L. D., Martínez-González, E., Toscano, R. A., Gaviño, R., Cárdenas, J., Rius-Alonso, C. A., Amador-Bedolla, C., A, G.. de la Mora, García, Ugalde-Saldivar, V. M., Polycycl. Aromat. Compd. 1-16 (2020). doi: 10.1080/10406638.2020.1749858CrossRefGoogle Scholar
Sharma, B., Alam, F., Dutta, V., Jacob, J., Org. Electron. 40, 42-50 (2016).CrossRefGoogle Scholar
Langis-Barsetti, S., Maris, T., Wuest, J. D., J. Org. Chem. 82, 50345045 (2017).CrossRefGoogle Scholar
Giannopoulos, P., Raptis, D., Theodosiou, K., Andreopoulou, A. K., Anastasopoulos, C., Dokouzis, A., Leftheriotis, G., Lianos, P., Kallitsis, J. K., Dyes Pigm. 148, 167-179 (2018).CrossRefGoogle Scholar
Kim, J. J., Choi, H., Lee, J. W., Kang, M. S., Song, K., Kang, S. O., Ko, J., J. Mater. Chem. 18, 5223-5229 (2008).CrossRefGoogle Scholar
Zhang, X., Yamaguchi, R., Moriyama, K., Kadowaki, M., Kobayashi, T., Ishi-i, T., Thiemann, T., Mataka, S., J. Mater. Chem. 16, 736-740 (2006).CrossRefGoogle Scholar
Pina, J., Seixas de Melo, J., Breusov, D., Scherf, U., Phys. Chem. Chem. Phys. 15, 15204-15213 (2013).CrossRefGoogle Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Sacalmani, G., Barone, V., Menucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpak, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelliv, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewsli, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Ciolowski, J. and Fox, J., Gaussian 09, Revisions, A.02, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.L.Google Scholar
Lu, T., Chen, F., J. Comput. Chem. 33, 580-592 (2012).CrossRefGoogle Scholar
Chen, P. Ren, Carrow, B. P., J. Am. Chem. Soc. 138, 63926395 (2016).CrossRefGoogle Scholar
Mattiello, S., Rooney, M., Sanzone, A., Brazzo, P., Sassi, M., Beverina, L., Org. Lett. 19, 654657 (2017).CrossRefGoogle Scholar
Bhanvadia, V. J., Patel, H. A., Sharma, N. N., Patel, A. L., Synth. Commun. 46, 1052-1061 (2016).CrossRefGoogle Scholar
Viswanathan, V. N., Rao, A. D., Pandey, U. K., Kesavan, A. V., Ramamurthy, P. C., Beilstein J. Org. Chem. 13, 863873 (2017).CrossRefGoogle Scholar
Chochos, C. L., Chávez, P., Bulut, I., Lévêque, P., Spanos, M., Tatsi, E., Katsouras, A., Avgeropoulos, A., Gregoriou, V. G., Leclerc, N., J. Chem. Phys. 149, 124902 (2018).CrossRefGoogle Scholar
Matsidik, R., Martin, J., Schmidt, S., Obermayer, J., Lombeck, F., Nübling, F., Komber, H., Fazzi, D., Sommer, M., J. Org. Chem. 80, 980987 (2015).CrossRefGoogle Scholar
Sun, X., Xu, X., Qiu, W., Yu, G., Zhang, H., Gao, X., Chen, S., Song, Y., Liu, Y., J. Mater. Chem. 18, 27092715 (2008).CrossRefGoogle Scholar
Palamà, I., Di Maria, F., Viola, I., Fabiano, E., Gigli, G., Bettini, C., Barbarella, G., J. Am. Chem. Soc. 133, 1777717785 (2011).CrossRefGoogle Scholar
Karamshuk, S., Caramori, S., Manfredi, N., Salamone, M., Ruffo, R., Carli, S., Bignozzi, C. A., Abbotto, A., Energies 9, 33-49 (2016).CrossRefGoogle Scholar
González-Antonio, O., Navarro Villalobos, M., Vázquez-Alvarado, M. M., Santillan, R., Flores-Pérez, B., Romero-Ávila, M., Farfán, N., New J. Chem. 43, 10491-10500 (2019).CrossRefGoogle Scholar
Menke, S. M., Ran, N. A., Bazan, G. C., Friend, R. H., Joule 2, 25-35 (2018).CrossRefGoogle Scholar
Roy, J. K., Kar, S., Leszczynski, J., Sci. Rep. 8, 10997-11008 (2018).CrossRefGoogle Scholar
Chen, C., Hernandez Maldonado, D., Le Borgne, D., Alary, F., Lonetti, B., Heinrich, B., Donnio, B., Moineau-Chane Ching, K., New J. Chem. 40, 7326-7337 (2016).CrossRefGoogle Scholar
Kim, H., Van, N. P. T., Kim, C., Seo, S., J. Nanosci. Nanotechnol. 18, 705-712 (2018).CrossRefGoogle Scholar
Liu, D., Zhang, Y., Zhan, L., Lau, T.-K., Yin, H., Fong, P. W. K., So, S. K., Zhang, S., Lu, X., Hou, J., Chen, H., Wong, W.-Y., Li, G., J. Mater. Chem. A 7, 14153-14162 (2019).CrossRefGoogle Scholar
Barreiro-Argüelles, D., Ramos-Ortiz, G., Maldonado, J. L., Pérez-Gutiérrez, E., Romero-Borja, D., Álvarez-Fernández, A., IEEE 7, 191-198 (2017).Google Scholar
Park, S., Jeong, J., Hyun, G., Kim, M., Lee, H., Yi, Y., Sci. Rep. 6, 35262-35272 (2016).CrossRefGoogle Scholar