Machine Learning Prediction of Henry Coefficients of Polar and Nonpolar Gases in Covalent Organic Frameworks: Effects of Interlayer Shifts and Functionalization

06 January 2026, Version 1
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

Covalent organic frameworks (COFs) are promising materials for gas separation and carbon capture. Computational techniques based on Monte Carlo simulation can be used to predict the gas adsorption properties of COFs with high accuracy, however they are too inefficient to be deployed in a high-throughput manner for screening large COF databases. In this paper, we systematically train and evaluate a range of machine learning models for predicting the Henry coefficients for CO2 and CH4 gas adsorption in COF materials. To account for COF structural variability, we train our models on datasets that include both chemically functionalized frameworks and interlayer displaced stacking configurations. By comparing predictive performance across descriptor–model architecture combinations, we demonstrate how different models capture the key physical factors governing gas adsorption, including electrostatics, local atomic environments, and van der Waals interactions. Our results therefore provide a framework for building machine learning models for scalable, high-throughput screening of COF materials with targeted gas adsorption properties.

Keywords

Covalent organic framework
Machine learning
Gas adsorption
Henry coefficient

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting figures showing data distribution and machine learning model performances.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.