Abstract
Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) < e^{\gamma } \times n \times \log \log n$ holds for all $n > 5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. We prove in another paper that the Robin inequality is true for all $n > 5040$ which are not divisible by any prime number between $2$ and $953$. Using this result, we show there is a contradiction just assuming the possible smallest counterexample $n > 5040$ of the Robin inequality. In this way, we prove that the Robin inequality is true for all $n > 5040$ and thus, the Riemann Hypothesis is true.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)