Abstract
In this work a complete proof of the Collatz Conjecture is presented. The solution assumes as hypothesis that Collatz's Conjecture is a consequence. We found that every natural number n_i∈N can be calculated starting from 1, using the function n_i=((2^(i-Ω)-C))⁄3^Ω , where: i≥0 represents the number of steps (operations of multiplications by two subtractions of one and divisions by three) needed to get from 1 to n_i, Ω≥0 represents the number of multiplications by three required and 0≤C≤2^(i-⌊i/3⌋ )-2^((i mod 3)) 3^⌊i/3⌋ is an accumulative constant that takes into account the order in which the operations of multiplication and division have been performed.
Reversing the inversion, we have obtained the function: ((3^Ω n_i+C))⁄2^(i-Ω)=1 that proves that Collatz Conjecture it’s a consequence of the above and also proofs that Collatz Conjecture it’s true since ((3^Ω n_i+C))⁄2^(i-Ω) is the recursive form of the Collatz’s function.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)