Abstract
Developing high-efficiency purely organic blue organic light-emitting diodes (OLEDs) that meet the stringent industry standards is a major current research challenge. Hyperfluorescent device approaches achieve in large measure the desired high performance by combining the advantages of a high-efficiency thermally activated delayed fluorescence (TADF) assistant dopant with a narrowband deep-blue multi-resonant TADF (MR-TADF) terminal emitter. However, this ap-proach requires suitable spectral overlap to support Förster resonance energy transfer (FRET) between the two.
Here we demonstrate colour tuning of a recently reported MR-TADF B,N-heptacene core through control of the boron substituents. While there is little impact on the intrinsic TADF properties - as both singlet and triplet energies decrease in tandem - this approach improves the emission colour coordinate as well as the spectral overlap for blue hyperfluorescence OLEDs (HF OLEDs). Crucially, the red-shifted and more intense absorption allows us to pair this MR-TADF emitter with a high-performance TADF assistant dopant and achieve maximum external quantum efficiency (EQEmax) of 15% at colour coordinates of (0.15, 0.10). The efficiency values recorded for our device at a practical luminance of 100 cd m-2 are among the highest reported for HF TADF OLEDs with CIEy ≤ 0.1.
Supplementary materials
Title
ESI
Description
Electronic Supporting Information
Actions



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)