Abstract
Robin's criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)5040$, where $\sigma(n)$ is the sum-of-divisors function of $n$ and $\gamma\approx 0.57721$ is the Euler-Mascheroni constant. We call this inequality, the Robin inequality. In 2022, Vega stated that the possible existence of the smallest counterexample $n>5040$ of the Robin inequality implies that $q_{m} > e^{31.018189471}$ and $(\log n)^{\beta} < 1.03352795481\times\log(N_{m})$, where $N_{m} = \prod_{i = 1}^{m} q_{i}$ is the primorial number of order $m$, $q_{m}$ is the largest prime divisor of $n$ and $\beta = \prod_{i = 1}^{m} \frac{q_{i}^{a_{i}+1}}{q_{i}^{a_{i}+1}-1}$ when $n$ must be an Hardy-Ramanujan integer of the form $\prod_{i=1}^{m} q_{i}^{a_{i}}$. Based on that result, we obtain a contradiction just assuming the existence of such possible smallest counterexample $n > 5040$ for the Robin inequality. By contraposition, we show that the Riemann hypothesis should be true.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)