Abstract
The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. In 2011, Sol{\'e} and and Planat stated that the Riemann Hypothesis is true if and only if the Dedekind inequality $\prod_{q\leq q_{n}}\left(1+\frac{1}{q} \right)>\frac{e^{\gamma}}{\zeta(2)}\times\log\theta(q_{n})$ is satisfied for all primes $q_{n}>3$, where $\theta(x)$ is the Chebyshev function, $\gamma\approx 0.57721$ is the Euler-Mascheroni constant and $\zeta(x)$ is the Riemann zeta function. We can deduce from that paper, if the Riemann Hypothesis is false, then the Dedekind inequality is not satisfied for infinitely many prime numbers $q_{n}$. Using this result, we prove the Riemann Hypothesis is true when $(1-\frac{0.15}{\log^{3}x})^{\frac{1}{x}}\times x^{\frac{1}{x}}\geq 1+\frac{\log(1-\frac{0.15}{\log^{3}x})+\log x}{x}$ is always satisfied for every sufficiently large positive number $x$. However, we know that inequality is trivially satisfied for every sufficiently large positive number $x$. In this way, we show the Riemann Hypothesis is true.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)