Abstract
NAE-3SAT consists in knowing whether a Boolean formula ϕ in 3CNF has a truth assignment such that for each clause at least one literal is true and at least one literal is false. NAE-3SAT remains NP-complete when all clauses are monotone. We create a polynomial time reduction which converts the monotone version into a bounded number of linear constraints on real numbers. Since the linear optimization on real numbers can be solved in polynomial time, then we can decide this NP-complete problem in polynomial time. Certainly, the problem of solving linear constraints on real numbers is equivalent to solve the particular case when there is a linear optimization without any objective to maximize or minimize. If any NP-complete can be solved in polynomial time, then we obtain that P = NP. Moreover, our polynomial reduction is feasible since it can be done in linear time.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)