Note for the Millennium Prize Problems

03 April 2024, Version 7
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

The Riemann hypothesis and the $P$ versus $NP$ problem are two of the most important unsolved Millennium Prize Problems. Let $\Psi(n) = n \cdot \prod_{q \mid n} \left(1 + \frac{1}{q} \right)$ denote the Dedekind $\Psi$ function where $q \mid n$ means the prime $q$ divides $n$. Define, for $n \geq 3$; the ratio $R(n) = \frac{\Psi(n)}{n \cdot \log \log n}$ where $\log$ is the natural logarithm. Let $N_{n} = 2 \cdot \ldots \cdot q_{n}$ be the primorial of order $n$. We prove if the inequality $R(N_{n+1}) < R(N_{n})$ holds for all primes $q_{n}$ (greater than some threshold), then the Riemann hypothesis is true. In this note, we show that the previous inequality always holds for all large enough prime numbers. A precise statement of the $P$ versus $NP$ problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another major complexity class is $NP$-complete. It is well-known that $P$ is equal to $NP$ under the assumption of the existence of a polynomial time algorithm for some $NP$-complete. We show that the Monotone Weighted Xor 2-satisfiability problem ($MWX2SAT$) is $NP$-complete and $P$ at the same time.

Keywords

Elementary number theory
Computational complexity
Riemann hypothesis
prime numbers
complexity classes
polynomial time

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.