Abstract
Abstract of Taha's 2nd Solution of Collatz Sequence
let Collatz Sequence of (r)=S(r)
let Collatz Sequence loop of (r)=lS(r)
S(n)={(n/2)=k≤n-1,…,(h) or…},n∈N_even,k,h∈N_+⋯Fact 1
S(n)={(n/2)or (3n+1),…}⇒S(n)⊇S((n/2) or (3n+1) ),n∈N_+⋯Fact 2
⇒ lS(n)= lS((n/2) or (3n+1) )…Fact 3
Example: S(5)={16,8,4,2,1}⇒
∴S(5)⊇S(16)⊇S(8)⊇S(4)⊇S(2)⊇ S(1)…Fact 1⇒
lS(5)=lS(16)=lS(8)=lS(4)=lS(2)=lS(1)…Fact 2



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)