Abstract
We demonstrate that black holes likely have an energy or mass gap, E_g/c^2=m_g, that is of the order m_g\approx m_p^2/M_{BH}. Interestingly, the mass of the black hole divided by the mass gap seems closely related to the Bekenstein-Hawking entropy and thereby potentially leads to a quantization of black holes. Even if mathematically trivial, this could be a potentially important step toward better understanding the potential to quantize black holes. Our focus is mainly on Schwarzschild black holes, but we also briefly discuss Reissner-Nordström black holes. It is also important that this results leads to minimal gravitational acceleration, creating a gravitational gap that could potentially eliminate dark matter.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)