Abstract
Abstract of Euler Perfect Box (Final)
a, b, c, d, e, f, g ∈ N_+ ⟺ Euler Perfect Box
Let a, b, c, d, e, f, r, k ∈N_+.
I have to prove that g ∈N_+
Let a < b < c, & [(a < r< k), or (a > r, and r < k)] ⇒ a ≠ r ≠ k
& let b=a + r, c = a+ k
g ^2=a^2 +b^2 +c^2
∴ g ^2=a^2 +(a + r) ^2 +(a + k) ^2
Let g^2= [a^2 + (a + r) ^2 +(a + 2] ∈NS)
∵ [a^2+2a (a + k) + (a + k) ^2] ∈NS)
∴ (a + r) ^2= 2a (a + k) ⇔ a = r = k …Contradiction to a≠ r ≠k
⇒ (a + r) ^2 ≠ 2(a + k) for all a, r, k ∈N+)/{a=r=k}.
∴g ^2 = [a^2 +(a + r) ^2 +(a + k) ^2] ∉ N_ (S) ⇒ g^2 ∉ NS) ⇒g ∉ N+)
∴ The Euler Perfect Box does not exist



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)