Evaluation of natural frequencies with two-node finite element in Timoshenko beam theory using quintic transverse displacement interpolation

16 September 2025, Version 2
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

Accurate determination of natural frequencies is essential for ensuring the dynamic stability of structures across a wide range of fields, including structural, aeronautical, and mechanical engineering. Resonance, which occurs when external dynamic forces match a structure’s natural frequency, can cause significant damage or failure. The finite element method is widely used for such analyses owing to its matrix-based formulation and suitability for computational implementation. This study presents a finite element framework for computing translational, rotational, and curvature-based natural frequencies of a prismatic beam, using a quintic interpolation function for transverse displacement based on Timoshenko beam theory. While linear interpolation is adequate for axial displacements, for transverse displacements, due to their sinusoidal behavior under loading, require higher-degree interpolation for accurate modeling. A quintic polynomial introduces six degrees of freedom per element in any local transverse axis direction, compatible with two-node configuration. This approach facilitates consistent assembly of global matrices and the formulation allows flexible mesh configurations and supports efficient matrix-based numerical implementation.

Keywords

Computational mechanics
Finite element analysis
Timoshenko beam theory
Quintic Hermite interpolation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.
Comment number 1, Marat Fazulzyanov: Dec 24, 2025, 07:56

Данная работа предлагает усовершенствованную конечно-элементную модель для расчёта собственных частот балок, ключевым достоинством которой является использование интерполяционного полинома пятой степени для поперечных перемещений в рамках теории Тимошенко, что принципиально важно для точного учета их синусоидального характера. Предложенная двухузловая конфигурация с шестью степенями свободы на элемент обеспечивает высокую точность при сохранении вычислительной эффективности и удобства сборки глобальных матриц жёсткости и масс. Таким образом, исследование представляет собой ценный вклад в развитие численных методов динамического анализа, предлагая сбалансированное решение, сочетающее повышенную точность моделирования изгибных и крутильных форм колебаний с практической реализуемостью в инженерном ПО