Towards Closed-Loop Neuromodulation: AI Prediction of Ventricular Tachyarrhythmias from Multimodal Biosignals in a Porcine Ischemia Model

26 September 2025, Version 1
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

Myocardial ischemia hyperactivates cardiac sensory neurons, disrupting autonomic balance through excessive sympathetic activity and predisposing the heart to fatal ventricular tachyarrhythmias (VTs). Neuromodulation therapies, including spinal cord stimulation, can suppress ischemia-induced sympathoexcitation. However, open-loop neuromodulation techniques lack adaptive control, leading to suboptimal precision, reduced long-term efficacy, and potential side effects. Closed-loop systems require reliable biofeedback to anticipate autonomic dysfunction and arrhythmic risk. In this study, we evaluate whether epicardial mapping, surface ECG, and arterial blood pressure can provide robust biofeedback signals for predicting VT incidence. Anesthetized Yorkshire pigs (n=12) were subjected to 1 hour of left anterior descending coronary artery ischemia, during which we recorded epicardial electrograms, surface ECG, and blood pressure. To confirm the increased sympathoexcitation and arrhythmogenicity during LAD ischemia, we measured the activation recovery interval, a surrogate for action potential duration, and the dispersion of repolarization. Additionally, we assessed the arrhythmia incidence by identifying the VT episodes. An AI method was then used to assess whether VT could be predicted using 20-second data segments leading to VT. During LAD ischemia, we observed shortened ARIs, increased DORs, and elevated arrhythmia scores, confirming the presence of sympathoexcitation and arrhythmogenicity. The AI model demonstrated a sensitivity of 0.774 and a specificity of 0.770, with a positive predictive value of 0.632 and a negative predictive value of 0.870. This study suggests that combining epicardial electrograms, surface ECG, and blood pressure may provide reliable inputs for an AI-assisted closed-loop system capable of predicting VT onset and triggering neuromodulation therapy before arrhythmia develops.

Keywords

Artificial Intelligence
Autonomic Nervous System
Myocardial ischemia
Ventricular Arrhythmia

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.
Comment number 1, Диана Дмитриева: Dec 06, 2025, 15:12

Статья изучает, можно ли с помощью ИИ заранее определить, что у сердца вот-вот начнётся опасная аритмия. Для этого учёные записывали сердечные сигналы у свиней во время искусственно вызванной ишемии и обучили модель отличать нормальное состояние от момента перед приступом . Сильная сторона работы — использование разных типов сигналов сразу (ЭКГ, давление, электрическая активность сердца), что делает прогноз точнее. Модель действительно смогла неплохо предсказывать приступы, что важно для будущих «умных» имплантов, которые смогут включать лечение заранее. Минус в том, что исследование маленькое и проведено только на животных, поэтому пока сложно сказать, как хорошо этот подход будет работать у людей.