DNA-Inspired Time Series Encoding: A Glimpse Into The Next 4-Hour Timeframe

27 November 2025, Version 1
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

In this work, we introduce a bio‑inspired encoding framework for forecasting the direction of financial time series. Motivated by the limitations of linear models and the opacity of many deep learning approaches, we draw an analogy to genetics: observable micro‑patterns are encoded into symbolic "Financial DNA" sequences. These sequences are then analyzed using a probabilistic state‑transition mechanism to estimate the likelihood of subsequent market directions. We evaluate the approach on Bitcoin hourly OHLCV data with a rolling backtest. Among the horizons considered, modeling transitions from current Financial DNA patterns to the 4‑hour‑ahead price direction yields the strongest results, achieving a win ratio of 0.729. The findings suggest that compact, interpretable symbolic representations can capture salient, recurring structures in noisy, non‑stationary markets and support effective directional forecasts.

Keywords

data encoding method
time series
forecasting
quantitative

Supplementary materials

Title
Description
Actions
Title
data.csv
Description
Time-series data used in this work.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.