Skip to content
Register Sign in Wishlist

Heat Transfer Physics

2nd Edition

  • Date Published: February 2014
  • availability: Available
  • format: Hardback
  • isbn: 9781107041783

Hardback

Add to wishlist

Other available formats:
eBook


Request examination copy

Instructors may request a copy of this title for examination

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers to enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum transport, and discussion of graphene and its phonon and electronic conductances. New appendix coverage of Phonon Contributions Seebeck Coefficient and Monte Carlo Methods are also included.

    • Includes expanded applications in energy conversion (including chemical bond, nuclear and solar) and expanded end-of-chapter problems
    • Features new appendices on Phonon Contributions Seebeck Coefficient and Monte Carlo methods
    • Contains expanded examples of size effects (with emphasis on nanostructures involving phonons, electron, fluid particles and photons)
    • Includes discussion of junction quantum transport, and of graphene and its phonon and electronic conductances
    Read more

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Edition: 2nd Edition
    • Date Published: February 2014
    • format: Hardback
    • isbn: 9781107041783
    • length: 788 pages
    • dimensions: 260 x 182 x 35 mm
    • weight: 1.39kg
    • contains: 388 b/w illus. 72 tables 165 exercises
    • availability: Available
  • Table of Contents

    1. Introduction and preliminaries
    2. Molecular orbitals/potentials/dynamics and quantum energy states
    3. Carrier energy transport and transformation theories
    4. Phonon energy storage, transport, and transformation kinetics
    5. Electron energy storage, transport, and transformation kinetics
    6. Fluid particle energy storage, transport, and transformation kinetics
    7. Photon energy storage, transport, and transformation kinetics
    Appendices A-I.

  • Resources for

    Heat Transfer Physics

    Massoud Kaviany

    Instructor Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to instructors whose faculty status has been verified. To gain access to locked resources, instructors should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other instructors may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Instructors are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact lecturers@cambridge.org.

  • Author

    Massoud Kaviany, University of Michigan, Ann Arbor
    Massoud Kaviany is a Professor in the Department of Mechanical Engineering and in the Applied Physics Program at the University of Michigan, where he has been since 1986. His area of teaching and research is heat transfer physics, with a particular interest in porous media. His current projects include atomic structural metrics in high-performance thermoelectric materials (both electron and phonon transport) and in laser cooling of solids (including ab initio calculations of photon-electron and electron-phonon couplings), and the effect of pore water in polymer electrolyte transport and fuel cell performance. His integration of research into education is currently focused on heat transfer physics, treating the atomic-level kinetics of transport and interaction of phonon, electron, fluid particle, and photon, in a unified manner. This combines ab initio (fine structure), molecular dynamics, Boltzmann transport, and macroscopic treatments, but on increasing length and time scales. He is author of the monographs Principles of Heat Transfer in Porous Media, 2nd edition, and Principles of Convective Heat Transfer, 2nd edition, and the undergraduate textbooks Principles of Heat Transfer and Essentials of Heat Transfer. He received the College of Engineering's Education Excellence Award in 2003. He is an editor of the Journal of Nanoscale and Microscale Thermophysical Engineering, and is on the editorial board of the International Journal of Heat and Mass Transfer and several other international journals. He is an ASME Fellow (since 1992) and an APS Fellow (since 2011), was Chair of the Committee on Theory and Fundamental Research in Heat Transfer (1995–8), and is the recipient of the 2002 ASME Heat Transfer Memorial Award (Science) and the 2010 Harry Potter Gold Medal (Thermodynamics Science).

Related Books

also by this author

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon
×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×