Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T08:11:17.242Z Has data issue: false hasContentIssue false

15 - Generation and Utilization of CRISPR/Cas9 Screening Libraries in Mammalian Cells

from Part III - Technology Development and Screening

Published online by Cambridge University Press:  30 July 2018

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 223 - 234
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrotis, A, Ketteler, R. 2015. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Frontiers in Genetics 6: 300.CrossRefGoogle ScholarPubMed
Cho, SW, Kim, S, Kim, Y, et al. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24(1): 132141.CrossRefGoogle ScholarPubMed
Dai, Z, Sheridan, JM, Gearing, LJ, et al. 2014. edgeR: a versatile tool for the analysis of shRNA-seq and CRISPR-Cas9 genetic screens. F1000Res 3: 95.Google ScholarPubMed
Doench, JG, Hartenian, E, Graham, DB, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12): 12621267.CrossRefGoogle ScholarPubMed
Fu, Y, Foden, JA, Khayter, C, et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9): 822826.CrossRefGoogle ScholarPubMed
Fu, Y, Sander, JD, Reyon, D, et al. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3): 279284.CrossRefGoogle ScholarPubMed
Gilbert, LA, Horlbeck, MA, Adamson, B, et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3): 647661.CrossRefGoogle ScholarPubMed
Gilbert, LA, Larson, MH, Morsut, L, et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2): 442451.CrossRefGoogle ScholarPubMed
Heigwer, F, Zhan, T, Breinig, M, et al. 2016. CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries. Genome Biol 17: 55.CrossRefGoogle ScholarPubMed
Hsu, PD, Scott, DA, Weinstein, JA, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9): 827832.CrossRefGoogle ScholarPubMed
Kim, J, Tan, AC. 2012. BiNGS!SL-seq: a bioinformatics pipeline for the analysis and interpretation of deep sequencing genome-wide synthetic lethal screen. Methods Mol Biol 802: 389398.CrossRefGoogle ScholarPubMed
Koike-Yusa, H, Li, Y, Tan, EP, et al. 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3): 267273.CrossRefGoogle ScholarPubMed
Konermann, S, Brigham, MD, Trevino, AE, et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536): 583588.CrossRefGoogle ScholarPubMed
Li, W, Köster, J, Xu, H, et al. 2015. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol 16(1): 113.CrossRefGoogle ScholarPubMed
Li, W, Xu, H, Xiao, T, et al. 2014. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15(12): 554.CrossRefGoogle ScholarPubMed
Mali, P, Aach, J, Stranges, PB, et al. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9): 833838.CrossRefGoogle ScholarPubMed
Mohr, SE, Hu, Y, Ewen-Campen, B, et al. 2016. CRISPR guide RNA design for research applications. FEBS J 283(17): 32323238.CrossRefGoogle ScholarPubMed
Ran, FA, Hsu, PD, Lin, CY, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6): 13801389.CrossRefGoogle ScholarPubMed
Shalem, O, Sanjana, NE, Hartenian, E, et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166): 8487.CrossRefGoogle ScholarPubMed
Shalem, O, Sanjana, NE, Zhang, F. 2015. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16(5): 299311.CrossRefGoogle ScholarPubMed
Sims, D, Mendes-Pereira, AM, Frankim, J, et al. 2011. High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing. Genome Biol 12(10): R104.CrossRefGoogle ScholarPubMed
Smith, JD, Suresh, S, Schlecht, U, et al. 2016. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol 17: 45.CrossRefGoogle ScholarPubMed
Taylor, J, Woodcock, S. 2015. A perspective on the future of high-throughput RNAi screening: will CRISPR cut out the competition or can RNAi help guide the way? J Biomol Screen 20(8): 10401051.CrossRefGoogle ScholarPubMed
Tsai, SQ, Zheng, Z, Nguyen, NT, et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2): 187197.CrossRefGoogle ScholarPubMed
Wade, M. 2015. High-throughput silencing using the CRISPR-Cas9 system: a review of the benefits and challenges. J Biomol Screen 20(8): 10271039.CrossRefGoogle ScholarPubMed
Wallace, J, Hu, R, Mosbruger, TL, et al. 2016. Genome-wide CRISPR-Cas9 screen identifies microRNAs that regulate myeloid leukemia cell growth. PLoS One 11(4): e0153689.CrossRefGoogle ScholarPubMed
Wang, T, Wei, JJ, Sabatini, DM, Lander, ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166): 8084.CrossRefGoogle ScholarPubMed
Wu, Y, Zhou, L, Wang, X, et al. 2016. A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A. Cell Discov 2: 16014.CrossRefGoogle ScholarPubMed
Xie, S, Shen, B, Zhang, C, Huang, X, Zhang, Y. 2014. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One 9(6): e100448.CrossRefGoogle ScholarPubMed
Zalatan, JG, Lee, ME, Almeida, R, et al. 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160(1–2): 339350.CrossRefGoogle ScholarPubMed
Zhou, Y, Zhu, S, Cai, C, et al. 2014. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509(7501): 487491.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×