Skip to main content Accessibility help
×
  • Cited by 23
Publisher:
Cambridge University Press
Online publication date:
July 2014
Print publication year:
2010
Online ISBN:
9780511760693

Book description

Spencer Bloch's 1979 Duke lectures, a milestone in modern mathematics, have been out of print almost since their first publication in 1980, yet they have remained influential and are still the best place to learn the guiding philosophy of algebraic cycles and motives. This edition, now professionally typeset, has a new preface by the author giving his perspective on developments in the field over the past 30 years. The theory of algebraic cycles encompasses such central problems in mathematics as the Hodge conjecture and the Bloch–Kato conjecture on special values of zeta functions. The book begins with Mumford's example showing that the Chow group of zero-cycles on an algebraic variety can be infinite-dimensional, and explains how Hodge theory and algebraic K-theory give new insights into this and other phenomena.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Artin, M. and B., Mazur, Formal groups arising from algebraic varieties, Ann. Sci. École Norm. Sup. (4), 10 (1977), 87-132.
Atiyah, M. and F., Hirzebruch, Analytic cycles on complex manifolds, Topology, 1 (1962) 25–45.
Bass, H.Algebraic K-Theory, Benjamin, New York (1968).
Bass, H. and J., Tate, The Milnor ring of a global field, in Algebraic K-Theory II, Lecture Notes in Math., no. 342, Springer, Berlin (1973).
Beauville, A.Variétés de Prym et jacobiennes intermédiaries, Ann. Sci. Ecole Norm. Sup. (4), 10 (1977), 304-391.
Beauville, A.Surfaces algébriques complexes, Astérisque, 59 (1978),
Bloch, S.K2 and algebraic cycles, Ann. of Math. (2), 99 (1974), 349-379.
Bloch, S.Torsion algebraic cycles, K2, and Brauer groups of function fields, Bull. Amer. Math. Soc., 80 (1974), 941-945.
Bloch, S.K2 of Artinian Q-algebras with application to algebraic cycles, Comm. Algebra, 3 (1975), 405-428.
Bloch, S.An example in the theory of algebraic cycles, pp. 1-29 in Algebraic K-Theory, Lecture Notes in Math., no. 551, Springer, Berlin (1976).
Bloch, S.Some elementary theorems about algebraic cycles on abelian varieties, Invent. Math., 37 (1976), 215-228.
Bloch, S.Algebraic K-theory and crystalline cohomology, Inst. Hautes Etudes Sci. Publ. Math., no. 47 (1977), 187-268 (1978).
Bloch, S.Applications of the dilogarithm function in algebraic K-theory and algebraic geometry, pp. 103-114 in Proceedings ofthe International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo (1978).
Bloch, S.Higher Regulators, Algebraic K-Theory, and Zeta Functions of Elliptic Curves, Lectures given at the University of California, Irvine (1978). [CRM Monograph Series, no. 11, American Mathematical Society, Providence, R.I., 2000.]
Bloch, S.Some formulas pertaining to the K-theory of commutative group schemes, J. Algebra, 53 (1978), 304-326.
Bloch, S.Torsion algebraic cycles and a theorem of Roitman, Compositio Math., 39 (1979), 107-127.
Bloch, S., A., Kas, and D., Lieberman, Zero cycles on surfaces with Pg = 0, Compositio Math., 33 (1976), 135-145,
Bloch, S. and J. P., Murre, On the Chow groups of certain types of Fano three-folds, Compositio Math., 39 (1979), 47-105.
Bloch, S. and A., Ogus, Gersten's conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4), 7 (1974), 181-201 (1975).
Borel, A.Cohomologie de SLn et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4 (1977), 613-636; errata, 7 (1980), 373.
Châtelet, F.Points rationnels sur certaines courbes et surfaces cubiques, Enseignement Math. (2), 5 (1959), 153-170 (1960).
Chevalley, C. et al., Anneaux de Chow et applications, Séminaire C. Chevalley, 2e année, Sécr. Math. Paris (1958).
Chow, W. L.On equivalence classes of cycles in an algebraic variety, Ann. of Math. (2), 64, 450-479 (1956).
Clemens, C. H. and P. A., Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2), 95 (1972), 281-356.
Colliot-Thélène, J.-L. and J.-J., Sansuc, Series of notes on rational varieties and groups of multiplicative type, C. R. Acad. Sci. Paris Ser. A-B, 282 (1976), A1113-A1116; 284 (1977), A967-A970; 284 (1977), A1215-A1218; 287 (1978), A449-A452.
Colliot-Thélène, J.-L. and J.-J., Sansuc, La R-équivalence sur les tores, Ann. Sci. Ecole Norm. Sup. (4), 10 (1977), 175-229.
Colliot-Thélène, J.-L. and D., Coray, L'équivalence rationnelle sur les points fermes des surfaces rationnelles fibrees en coniques, Compositio Math., bf 39 (1979), 301-332.
Deligne, P.Théorie de Hodge. I, pp. 425-430 in Actes du Congres International des Mathematiciens (Nice, 1970), vol. 1, Gauthier-Villars, Paris (1971).
Deligne, P.Théorie de Hodge III, Inst. Hautes Etudes Sci. Publ. Math., no. 44 (1974), 5-77.
Deligne, P.Poids dans la cohomologie des varietes algebriques, pp. 79-85 in Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), vol. 1 (1975).
Deligne, P.Cohomologie étale (SGA 4½), Lecture Notes in Math., no. 569, Springer, Berlin (1977).
Elman, R. and T. Y., Lam, On the quaternion symbol homomorphism gF: k2(F) → B(F), in Algebraic K-Theory II, Lecture Notes in Math., no. 342, Springer, Berlin (1973).
Fatemi, T. L'equivalence rationelle des zéro cycles sur les surfaces algébriques complexes a cup product surjectif, These du 3e cycle, Université de Paris VII (1979).
Fulton, W.Rational equivalence on singular varieties, Inst. Hautes Études Sci. Publ. Math., no. 45 (1975), 147-167.
Fulton, W. and R., MacPherson, Intersecting cycles on an algebraic variety, Aarhus Universitet Preprint Series, no. 14 (1976). [Pp. 179-197 in Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn (1977).]
Gersten, S. M.Some exact sequences in the higher K-theory of rings, pp. 211-243 in Algebraic K-Theory I, Lecture Notes in Math., no. 341, Springer, Berlin (1973).
Gillet, H.Applications of algebraic K-theory to intersection theory, Thesis, Harvard (1978).
Griffiths, P.On the periods of certain rational integrals. I, II, Ann. of Math. (2), 90 (1969), 460-495; 90 (1969), 496-541.
Griffiths, P. and J., Harris, Principles of Algebraic Geometry, Wiley, New York (1978). [Reprinted 1994.]
Grothendieck, A.Le groupe de Brauer I, II, III, pp. 46-188 in Dix exposés sur la cohomologie des schémas, North Holland, Amsterdam (1968).
Grothendieck, A. et al., Théorie des intersections et théorème de Riemann–Roch (SGA 6), Lecture Notes in Math., no. 225, Springer, Berlin (1971).
Hartshorne, R.On the de Rham cohomology of algebraic varieties, Inst. Hautes Etudes Sci. Publ. Math., no. 45 (1975), 5-99.
Inose, H. and M., Mizukami, Rational equivalence of 0-cycles on some surfaces of general type with pg = 0, Math. Ann., 244 (1979), no. 3, 205-217.
Kleiman, S.Algebraic cycles and the Weil conjectures, pp. 359-386 in Dix exposés sur la cohomologie des schémas, North Holland, Amsterdam (1968).
Lam, T. Y.The Algebraic Theory of Quadratic Forms, W. A. Benjamin, Reading, Mass. (1973). [Revised second printing, 1980. See also Introduction to Quadratic Forms over Fields, American Mathematical Society, Providence, R.I., 2005.]
Lang, S.Abelian Varieties, Interscience Publishers (1959). [Reprinted Springer, 1983.]
Lang, S.Elliptic Functions, Addison-Wesley, Reading, Mass. (1973). [Second edition: Springer, New York, 1987.]
Lieberman, D. I.Higher Picard varieties, Amer. J. Math., 90 (1968), 1165-1199.
Manin, Yu.Le groupe de Brauer–Grothendieck en géométrie diophantienne, pp. 401-411 in Actesdu Congrès International Mathématiciens (Nice, 1970), vol. 1, Gauthier-Villars, Paris (1971).
Manin, Yu.Cubic Forms, North Holland, Amsterdam (1974). [Second edition, 1986.]
Mattuck, A.Ruled surfaces and the Albanese mapping, Bull. Amer. Math. Soc., 75 (1969), 776-779.
Mattuck, A.On the symmetric product of a rational surface, Proc. Amer. Math. Soc., 21 (1969), 683-688.
Milnor, J.Algebraic K-theory and quadratic forms, Invent. Math., 9 (1970), 318-344.
Milnor, J.Introduction to Algebraic K-Theory, Annals of Mathematics Studies, vol. 72, Princeton University Press, Princeton, N.J. (1971).
Mumford, D.Rational equivalence of zero-cycles on surfaces, J. Math. Kyoto Univ., 9 (1968), 195-204,
Murre, J. P.Algebraic equivalence modulo rational equivalence on a cubic threefold, Compositio Math., 25 (1972), 161-206.
Nakayama, T.Cohomology of class field theory and tensor product modules I, Ann. of Math. (2), 65 (1957), 255-267.
Quillen, D.Higher algebraic K-theory. I, in Algebraic K-Theory I, Lecture Notes in Math., no. 341, Springer, Berlin (1973).
Quillen, D. and D., Grayson, Higher algebraic K-theory. II, pp. 217-240 in Algebraic K-Theory, Lecture Notes in Math., no. 551, Springer, Berlin (1976).
Roitman, A. A.Γ-equivalence of zero-dimensional cycles (in Russian), Mat. Sb. (N.S.), 86 (128) (1971), 557-570. [Translation: Math USSR-Sb., 15 (1971), 555-567.]
Roitman, A. A.Rational equivalence of zero-dimensional cycles (in Russian), Mat. Sb. (N.S.), 89 (131) (1972), 569-585, 671. [Translation: Math. USSR-Sb., 18 (1974), 571-588.]
Rosenlicht, M.Generalized Jacobian varieties, Ann. of Math., 59 (1954), 505-530.
Samuel, P.Rational equivalence of arbitrary cycles, Amer. J. Math., 78 (1956), 383-400.
Serre, J.-P.Sur la topologie des variétés algebriques en caractéristique p, pp. 24-53 in Symposium Internacional de Topologia Algebraica, Universidad Nacional Autónoma de Mexico and UNESCO, Mexico City (1958).
Serre, J.-P.. Groupes algébriques et corps de classes, Hermann, Paris (1959). [Second edition, 1975; reprinted, 1984.]
Serre, J.-P.Algèbre locale. Multiplictés, Lecture Notes in Math., no. 11, Springer, Berlin (1965).
Serre, J.-P.Corps Locaux, second edition, Hermann, Paris (1968). [Translation: Local Fields, Springer, New York, 1979.]
Sherman, C.K-cohomology of regular schemes, Comm. Algebra, 7 (1979), 999-1027.
Stienstra, J.Deformations of the second Chow group, Thesis, Utrecht (1978).
Stienstra, J.The formal completion of the second Chow group: a K-theoretic approach, pp. 149-168 in Journée de Géométrie Algebrique de Rennes (Rennes, 1978), Vol. II, Asterisque, 64 (1979).
Swan, R.Algebraic K-Theory, Lecture Notes in Math., no. 76, Springer, Berlin (1968).
Tate, J.Relations between K2 and Galois cohomology, Invent. Math., 36 (1976), 257-274.
Tennison, B. R.On the quartic threefold, Proc. London Math. Soc. (3), 29 (1974), 714-734.
Tyurin, A. N.Five lectures on three-dimensional varieties (in Russian), Uspehi Mat. Nauk, 27 (1972), no. 5, (167) 3-50. [Translation: Russian Math. Surveys, 27 (1972), no. 5, 1-53.]
Verdier, J.-L.Dualité dans la cohomologie des espaces localement compacts, Séminaire Bourbaki, Vol. 9, exposé no. 300 (1965), 337-349. [Reprinted Société Mathématique de France, Paris, 1995.]
Verdier, J.-L.A duality theorem in the etale cohomology of schemes, pp. 184-198 in Proceedings of a conference on local fields (Driebergen, 1966), Springer, Berlin (1967).
Wallace, A.Homology Theory on Algebraic Varieties, Pergamon Press, New York (1958).
Weil, A.Foundations of Algebraic Geometry, A.M.S. Colloquium Publications, vol. 29, American Mathematical Society, Providence, R.I. (1946).
Weil, A.Courbes Algébriques et Variétés Abéliennes, Hermann, Paris (1971).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.