Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-10T06:26:21.702Z Has data issue: false hasContentIssue false

Chapter 14 - Benign Adult Brain Tumors and Pediatric Brain Tumors

from Section 2 - Clinical Neurosurgical Diseases

Published online by Cambridge University Press:  04 January 2024

Farhana Akter
Affiliation:
Harvard University, Massachusetts
Nigel Emptage
Affiliation:
University of Oxford
Florian Engert
Affiliation:
Harvard University, Massachusetts
Mitchel S. Berger
Affiliation:
University of California, San Francisco
Get access

Summary

Brain tumors in adults and children range from devastating malignant tumors with a dire prognosis to benign tumors that can be totally resected with a favorable outcome. The incidence rate for primary brain tumors in adults in the United States is approximately 23.8 per 100,000 persons. Of those, approximately two thirds are benign or borderline in nature. The most common benign tumor in adults is meningioma. The incidence in the pediatric population is approximately 6.1 per 100,000 children. However, the incidence of malignant brain tumors is higher in children than adults. We discuss the most common benign brain tumors in adults followed by a discussion on pediatric brain tumors.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbud, RA, Takumi, I, Barker, EM, et al. Early multipotential pituitary focal hyperplasia in the alpha-subunit of glycoprotein hormone-driven pituitary tumor-transforming gene transgenic mice. Mol Endocrinol 2005;19(5):1383–91. https://doi.org/10.1210/me.2004-0403.CrossRefGoogle ScholarPubMed
Abedalthagafi, M, Bi, WL, Aizer, AA, et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol 2016;18(5):649–55. https://doi.org/10.1093/neuonc/nov316.CrossRefGoogle ScholarPubMed
An, J, Pei, X, Zang, Z, et al., Metformin inhibits proliferation and growth hormone secretion of GH3 pituitary adenoma cells. Oncotarget 2017:8(23):37538–49. https://doi.org/10.18632/oncotarget.16556.CrossRefGoogle ScholarPubMed
Apps, JR, Martinez-Barbera, JP. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology. Brain Pathol. 2017 May;27(3):364–369. doi: 10.1111/bpa.12501.CrossRefGoogle ScholarPubMed
Asa, SL, Kovacs, K, Stefaneanu, L, et al., Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinology 1992;131(5):2083–9. https://doi.org/10.1210/endo.131.5.1425411.CrossRefGoogle ScholarPubMed
Aziz-Bose, R, Monje, M. Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets. Curr Opin Oncol 2019;31(6):522–30. https://doi.org/10.1097/CCO.0000000000000577.Google Scholar
Bai, F, Chan, HL, Smith, MD, Kiyokawa, H, Pei, X-H. p19Ink4d is a tumor suppressor and controls pituitary anterior lobe cell proliferation. Mol Cell Biol 2014;34(12):2121–34. https://doi.org/10.1128/MCB.01363-13.Google Scholar
Bentley, L, Esapa, CT, Nesbit, MA, et al. An N-ethyl-N-nitrosourea induced corticotropin-releasing hormone promoter mutation provides a mouse model for endogenous glucocorticoid excess. Endocrinology 2014;155(3):908–22. https://doi.org/0.1210/en.2013-1247.Google Scholar
Bertolino, P, Tong, W-M, Herrera, PL, et al. Pancreatic beta-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice. Cancer Res 2003;63(16):4836–41.Google Scholar
Bi, WL, Abedalthagafi, M, Horowitz, P, et al. Genomic landscape of intracranial meningiomas. J Neurosurg 2016a;125(3):525–35. https://doi.org/10.3171/2015.6.JNS15591.Google Scholar
Bi, WL, Mei, Y, Agarwalla, PK, Beroukhim, R, Dunn, IF. Genomic and epigenomic landscape in meningioma. Neurosurg Clinics 2016b;27(2):167–79. https://doi.org/10.1016/j.nec.2015.11.009.Google ScholarPubMed
Biondi, CA, Gartside, MG, Waring, P, et al. Conditional inactivation of the MEN1 gene leads to pancreatic and pituitary tumorigenesis but does not affect normal development of these tissues. Mol Cell Biol 2004;24(8):3125–31. https://doi.org/10.1128/MCB.24.8.3125-3131.2004.CrossRefGoogle Scholar
Booth, A, Trudeau, T, Gomez, C, Lucia, MS, Gutierrez-Hartmann, A. Persistent ERK/MAPK activation promotes lactotrope differentiation and diminishes tumorigenic phenotype. Mol Endocrinol 2014;28(12):19992011. https://doi.ord/10.1210/me.2014-1168.CrossRefGoogle ScholarPubMed
Cai, DX, Banerjee, R, Scheithauer, BW, Lohse, CM, Kleinschmidt-Demasters, BK, Perry, A. Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 2001;60(6):628–36. https://doi.org/10.1093/jnen/60.6.628.Google Scholar
Chang, LS, Welling, DB. Molecular biology of vestibular schwannomas. Methods Mol Biol 2009;493:163–77. https://doi.org/10.1007/978-1-59745-523-7_10.CrossRefGoogle ScholarPubMed
Cheng, SQ, Fan, H-Y, Xu, X, et al, Over-expression of LRIG1 suppresses biological function of pituitary adenoma via attenuation of PI3K/AKT and Ras/Raf/ERK pathways in vivo and in vitro. J Huazhong Univ Sci Technolog Med Sci 2016;36(4):558–63. https://doi.org/10.1007/s11596-016-1625-4.Google Scholar
Chesnokova, V, Kovacs, K, Castro, A-V, Zonis, S, Melmed, S. Pituitary hypoplasia in Pttg–/– mice is protective for Rb+/– pituitary tumorigenesis. Mol Endocrinol 2005;19(9):2371–9. https://doi.org/10.1210/me.2005-0137.Google Scholar
Choudhury, A, Raleigh, DR. Preclinical models of meningioma: cell culture and animal systems. Handb Clin Neurol 2020;169:131–6. https://doi.org/10.1016/B978-0-12-804280-9.00008-1.CrossRefGoogle ScholarPubMed
Chukwueke, UN, Wen, PY. Medical management of meningiomas. In MW, McDermott (Ed.), Handbook of Clinical Neurology. Elsevier, 2020: pp. 291302.Google Scholar
Chung PED, Gendoo DMA, Ghanbari-Azarnier, R, Liu, JC, Jiang, Z, Tsui J, Wang DY, Xiao X, Li B, Dubuc A, Shih D, Remke M, Ho B, Garzia L, Ben-David Y, Kang SG, Croul S, Haibe-Kains B, Huang A, Taylor MD, Zacksenhaus E. Modeling germline mutations in pineoblastoma uncovers lysosome disruption-based therapy. Nat Commun. 2020 Apr 14;11(1):1825. doi: 10.1038/s41467-020-15585-2.Google Scholar
Chunharojrith, P, Nakayama, Y, Jiang, X, et al., Tumor suppression by MEG3 lncRNA in a human pituitary tumor derived cell line. Mol Cell Endocrinol 2015;416:2735. https://doi.org/10.1016/j.mce.2015.08.018.CrossRefGoogle Scholar
Clark, VE, Erson-Omay, EZ, Serin, A, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013;339(6123):1077–80. https://doi.org/10.1126/science.1233009.CrossRefGoogle ScholarPubMed
Crabtree, JS, Scacheri, PC, Ward, JM, et al. Of mice and MEN1: insulinomas in a conditional mouse knockout. Mol Cell Biol 2003;23(17):6075–85. https://doi.org/10.1128/MCB.23.17.6075-6085.2003.CrossRefGoogle Scholar
de Vries, M, van der Mey, AG, Hogendoorn, PC. Tumor biology of vestibular Schwannoma: a review of experimental data on the determinants of tumor genesis and growth characteristics. Otol Neurotol 2015;36(7):1128–36. https://doi.org/10.1097/MAO.0000000000000788.CrossRefGoogle ScholarPubMed
Donangelo, I, Gutman, S, Horvath, E, et al. Pituitary tumor transforming gene overexpression facilitates pituitary tumor development. Endocrinology 2006;147(10):4781–91. https://doi.org/10.1210/en.2006-0544.CrossRefGoogle ScholarPubMed
Ezzat, S, Zheng, L, Winer, D, Asa, SL. Targeting N-cadherin through fibroblast growth factor receptor-4: distinct pathogenetic and therapeutic implications. Mol Endocrinol 2006;20(11):2965–75. https://doi.org/10.1210/me.2006-0223.Google Scholar
Fangusaro, J. Pediatric high grade glioma: a review and update on tumor clinical characteristics and biology. Front Oncol 2012;2:105. https://doi.org/10.3389/fonc.2012.00105.CrossRefGoogle ScholarPubMed
Favero, G, Bonomini, F, Rezzani, R. Pineal gland tumors: a review. Cancers (Basel) 2021;13(7):1547. https://doi.org/10.3390/cancers13071547.Google Scholar
Fedele, M, Battista, S, Kenyon, L, et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 2002;21(20):3190–8. https://doi.org/10.1038/sj.onc.1205428.Google Scholar
Fedele, M, Pentimalli, F, Baldassarre, G, et al. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 2005;24(21):3427–35. https://doi.org/10.1038/sj.onc.1208501.CrossRefGoogle ScholarPubMed
Fedele, M, Visone, R, De Martino, I, et al. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 2006;9(6):459–71. https://doi.org/10.1016/j.ccr.2006.04.024Google Scholar
Franklin, DS, Godfrey, VL, Lee, H, et al. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998;12(18):2899–911. https://doi.org/10.1101/gad.12.18.2899.Google Scholar
Fuertes, M, Sapochnik, M, Tedesco, L, et al. Protein stabilization by RSUME accounts for PTTG pituitary tumor abundance and oncogenicity. Endocr Relat Cancer 2018;25(6):665–76. https://doi.org/10.1530/ERC-18-0028.CrossRefGoogle ScholarPubMed
Gahete, MD, Jiménez-Vacas, JM, Alors-Pérez, E, et al. Mouse models in endocrine tumors. J Endocrinol 2019;240(3):R7393. https://doi.org/10.1530/JOE-18-0571Google Scholar
Greene, HSN, Arnold, H. The homologous and heterologous transplantation of brain and brain tumors. J Neurosurg 1945;2(4):315–31. https://doi.org/10.3171/jns.1945.2.4.0315.Google Scholar
Guidi, CJ, Mudhasani, R, Hoover, K, et al. Functional interaction of the retinoblastoma and Ini1/Snf5 tumor suppressors in cell growth and pituitary tumorigenesis. Cancer Res 2006;66(16):8076–82. https://doi.org/10.1158/0008-5472.CAN-06-1451.CrossRefGoogle ScholarPubMed
Harvey, M, Vogel, H, Lee, EY, Bradley, A, Donehower, LA. Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 1995;55(5):1146–51.Google Scholar
Helseth, A, Siegel, GP, Haug, E, Bautch, VL. Transgenic mice that develop pituitary tumors. A model for Cushing’s disease. Am J Pathol 1992;140(5):1071–80.Google Scholar
Hemmer, S, Sippl, C, Sahm, F, Oertel, J, Urbschat, S, Ketter, R. The loss of 1p as a reliable marker of progression in a child with aggressive meningioma: a 16-year follow-up case report. Ped Neurosurg 2020;55(6):418–25. https://doi.org/10.1159/000512001.Google Scholar
Hirato, J, Nakazato, Y. Pathology of pineal region tumors. J Neurooncol 2001;54(3):239–49. https://doi.org/10.1023/a:1012721723387.Google Scholar
Jacks, T, Fazeli, A, Schmitt, EM, Bronson, RT, Goodell, MA, Weinberg, RA. Effects of an Rb mutation in the mouse. Nature 1992:359(6393):295300. https://doi.org/10.1038/359295a0.CrossRefGoogle Scholar
Jalali, S, Monsalves, E, Tateno, T, Zadeh, G. Role of mTOR inhibitors in growth hormone-producing pituitary adenomas harboring different FGFR4 genotypes. Endocrinology 2016;157(9):3577–87. https://doi.org/10.1210/en.2016-1028.Google Scholar
James, MF, Han, S, Polizzano, C, et al. NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 2009;29(15):4250–61. https://doi.org/10.1128/MCB.01581-08.CrossRefGoogle ScholarPubMed
Johung, TB, Monje, M. Diffuse intrinsic pontine glioma: new pathophysiological insights and emerging therapeutic targets. Curr Neuropharmacol 2017;15(1):8897. https://doi.org/10.2174/1570159x14666160509123229.Google Scholar
Kalamarides, M, Niwa-Kawakita, M, Leblois, H, et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev 2002;16(9):1060–5. https://doi.org/10.1101/gad.226302.Google Scholar
Kiyokawa, H, Kineman, RD, Manova-Todorova, KO, et al., Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 1996;85(5):721–32. https://doi.org/10.1016/s0092-8674(00)81238-6.Google Scholar
Kumar, TR, Graham, KE, Asa, SL, Low, MJ. Simian virus 40 T antigen-induced gonadotroph adenomas: a model of human null cell adenomas. Endocrinology 1998:139(7):3342–51. https://doi.org/10.1210/endo.139.7.6100.CrossRefGoogle Scholar
Lee, Y, Liu, J, Patel, S, et al. Genomic landscape of meningiomas. Brain Pathol 2010;20(4):751–62. https://doi.org/10.1111/j.1750-3639.2009.00356.x.CrossRefGoogle ScholarPubMed
Li, R, Zhang, Z, Wang, J, et al. Triptolide suppresses growth and hormone secretion in murine pituitary corticotroph tumor cells via NF-kappaB signaling pathway. Biomed Pharmacother 2017;95:771–9. https://doi.org/10.1016/j.biopha.2017.08.127.CrossRefGoogle ScholarPubMed
Lin, SJ, Wu, ZR, Cao, L, et al. Pituitary tumor suppression by combination of cabergoline and chloroquine. J Clin Endocrinol Metab 2017;102(10):3692–703. https://doi.org/10.1210/jc.2017-00627.CrossRefGoogle ScholarPubMed
Lloyd, RV, Ruebel, KH, Zhang, S, Jin, L. Pituitary hyperplasia in glycoprotein hormone alpha subunit-, p18(INK4C)-, and p27(kip-1)-null mice: analysis of proteins influencing p27(kip-1) ubiquitin degradation. Am J Pathol 2002;160(3): 1171–9. https://doi.org/10.1016/S0002-9440(10)64936-X.CrossRefGoogle ScholarPubMed
Loffler, KA, Biondi, CA, Gartside, MG, et al. Lack of augmentation of tumor spectrum or severity in dual heterozygous Men1 and Rb1 knockout mice. Oncogene 2007;26(27):4009–17. https://doi.org/10.1038/sj.onc.1210163.Google Scholar
Louis, DN, Perry, A, Wesseling, P, et al. The 2021 WHO Classi cation of Tumors of the Central Nervous System: a summary. Neuro-Oncology. 2021;23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106.Google Scholar
Low, MJ, Liu, B, Hammer, GD, Rubinstein, M, Allen, RG. Post-translational processing of proopiomelanocortin (POMC) in mouse pituitary melanotroph tumors induced by a POMC-simian virus 40 large T antigen transgene. J Biol Chem 1993;268(33):24967–75.Google Scholar
Lu, J, Chatain, GP, Bugarini, A, et al. Histone deacetylase inhibitor SAHA is a promising treatment of cushing disease. J Clin Endocrinol Metab 2017;102(8):2825–35. 10.1210/jc.2017-00464.Google Scholar
Mannelli, M, Cantini, G, Poli, G, et al. Role of the PPAR-γ system in normal and tumoral pituitary corticotropic cells and adrenal cells. Neuroendocrinology 2010;92(Suppl 1):23–7. https://doi.org/10.1159/000314312.Google Scholar
Manoranjan, B, Mahendram, S, Almenawer, SA, et al. The identification of human pituitary adenoma-initiating cells. Acta Neuropathol Commun 2016;4(1):125. https://doi.org/10.1186/s40478-016-0394-4.Google Scholar
McClatchey, AI, Saotome, I, Mercer, K, et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 1998;12(8):1121–33. https://doi.org/10.1101/gad.12.8.1121.CrossRefGoogle ScholarPubMed
McCutcheon, IE, Friend, KE, Gerdes, TM, Zhang, BM, Wildrick, DM, Fuller, GN. Intracranial injection of human meningioma cells in athymic mice: an orthotopic model for meningioma growth. J Neurosurg 2000;92(2):306–14. https://doi.org/10.3171/jns.2000.92.2.0306.CrossRefGoogle ScholarPubMed
McSheehy, PM, Troy, H, Kelland, LR, Judson, IR, Leach, MO, Griffiths, JR. Increased tumour extracellular pH induced by Bafilomycin A1 inhibits tumour growth and mitosis in vivo and alters 5-fluorouracil pharmacokinetics. Eur J Cancer 2003;39(4):532–40. 10.1016/s0959-8049(02)00671-8.Google Scholar
Millard, NE, De Braganca, KC. Medulloblastoma. J Child Neurol 2016;31(12):1341–53. https://doi.org/10.1177/0883073815600866. Erratum in J Child Neurol, 2016.CrossRefGoogle ScholarPubMed
Morrison, JP, Satoh, H, Foley, J, et al. N-ethyl-N-nitrosourea (ENU)-induced meningiomatosis and meningioma in p16(INK4a)/p19(ARF) tumor suppressor gene-deficient mice. Toxicol Pathol 2007;35(6):780–7. https://doi.org/10.1080/01926230701584130.Google Scholar
Müller, HL. Craniopharyngioma. Endocr Rev 2014;35(3):513–43. https://doi.org/10.1210/er.2013-1115.Google Scholar
Müller, HL, Merchant, TE, Warmuth-Metz, M, Martinez-Barbera, JP, Puget, S. Craniopharyngioma. Nat Rev Dis Primers 2019;5(1):75. https://doi.org/10.1038/s41572-019-0125-9.CrossRefGoogle ScholarPubMed
Nakayama, K, Ishida, N, Shirane, M, et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996;85(5):707–20. https://doi.org/10.1016/s0092-8674(00)81237-4.Google Scholar
Ning, S, Knox, SJ, Harsh, GR, Culler, MD, Katznelson, L. Lanreotide promotes apoptosis and is not radioprotective in GH3 cells. Endocr Relat Cancer 2009;16(3):1045–55. https://doi.org/10.1677/ERC-09-0003.Google Scholar
Northcott, PA, Robinson, GW, Kratz, CP, et al. Medulloblastoma. Nat Rev Dis Primers 2019;5(1):11. https://doi.org/10.1038/s41572-019-0063-6.Google Scholar
Ostrom, QT, Patil, N, Cioffi, G, Waite, K, Kruchko, C, Barnholtz-Sloan, JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-Oncology 2020;22(Suppl_1):iv196. https://doi.org/10.1093/neuonc/noaa200.Google Scholar
Pei, L, Melmed, S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 1997;11(4):433–41. https://doi.org/10.1210/mend.11.4.9911.CrossRefGoogle ScholarPubMed
Petrilli, AM, Fernández-Valle, C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2016;35(5):537–48. https://doi.org/10.1038/onc.2015.125.CrossRefGoogle ScholarPubMed
Peyre, M, Salaud, C, Clermont-Taranchon, E, et al. PDGF activation in PGDS-positive arachnoid cells induces meningioma formation in mice promoting tumor progression in combination with Nf2 and Cdkn2ab loss. Oncotarget 2015;6(32):32713–22. https://doi.org/10.18632/oncotarget.5296.Google Scholar
Plant-Fox, AS, O’Halloran, K, Goldman, S. Pediatric brain tumors: the era of molecular diagnostics, targeted and immune-based therapeutics, and a focus on long term neurologic sequelae. Curr Probl Cancer 2021;45(4):100777. https://doi.org/10.1016/j.currproblcancer.2021.100777.Google Scholar
Raitila, A, Lehtonen, HJ, Arola, J, et al. Mice with inactivation of aryl hydrocarbon receptor-interacting protein (Aip) display complete penetrance of pituitary adenomas with aberrant ARNT expression. Am J Pathol 2010;177(4):1969–76. https://doi.org/10.2353/ajpath.2010.100138.Google Scholar
Rath, P, Miller, DC, Litofsky, NS, et al. Isolation and characterization of a population of stem-like progenitor cells from an atypical meningioma. Exp Mol Pathol 2011;90(2):179–88. https://doi.org/10.1016/j.yexmp.2010.12.003.Google Scholar
Reni, M, Gatta, G, Mazza, E, Vecht, C. Ependymoma. Crit Rev Oncol Hematol 2007;63(1):81–9. https://doi.org/10.1016/j.critrevonc.2007.03.004.Google Scholar
Reuss, DE, Piro, RM, Jones, DTW, et al. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol 2013;125(3):351–8. https://doi.org/10.1007/s00401-013-1093-x.CrossRefGoogle ScholarPubMed
Roche, C, Rasolonjanahary, R, Thirion, S, et al. Inactivation of transcription factor pit-1 to target tumoral somatolactotroph cells. Hum Gene Ther 2012;23(1):104–14. https://doi.org/10.1089/hum.2011.105.Google Scholar
Roussel-Gervais, A, Bilodeau, S, Vallette, S, et al. Cooperation between cyclin E and p27(Kip1) in pituitary tumorigenesis. Mol Endocrinol 2010;24(9):1835–45. https://doi.org/10.1210/me.2010-0091.Google Scholar
Russell, WL, Kelly, EM, Hunsicker, PR, Bangham, JW, Maddux, SC, Phipps, EL. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. PNAS 1979;76(11):5818–9. https://doi.org/10.1073/pnas.76.11.5818.Google Scholar
Sáez, C, Japón, MA, Ramos-Morales, F, et al. hpttg is over-expressed in pituitary adenomas and other primary epithelial neoplasias. Oncogene 1999;18(39):5473–6. https://doi.org/10.1038/sj.onc.1202914.Google Scholar
Seizinger, BR, de la Monte, S, Atkins, L, Gusella, JF, Martuza, RL. Molecular genetic approach to human meningioma: loss of genes on chromosome 22. PNAS 1987;84(15):5419–23. https://doi.org/10.1073/pnas.84.15.5419.Google Scholar
Shapiro, IM, Kolev, VN, Vidal, CM, et al. Merlin deficiency predicts FAK inhibitor sensitivity: a synthetic lethal relationship. Sci Transl Med 2014;6(237):237ra68–237ra68. https://doi.org/10.1126/scitranslmed.3008639.CrossRefGoogle ScholarPubMed
Sotillo, R, Renner, O, Dubus, P, et al., Cooperation between Cdk4 and p27kip1 in tumor development: a preclinical model to evaluate cell cycle inhibitors with therapeutic activity. Cancer Res, 2005. 65(9): p. 3846-52. https://doi.org/10.1158/0008-5472.CAN-04-4195.Google Scholar
Stefaneanu, L, Rindi, G, Horvath, E, Murphy, D, Polak, JM, Kovacs, K. Morphology of adenohypophysial tumors in mice transgenic for vasopressin-SV40 hybrid oncogene. Endocrinology 1992;130(4):1789–95. https://doi.org/10.1210/endo.130.4.1312426.Google Scholar
Stenzel-Poore, MP, Cameron, VA, Vaughan, J, Sawchenko, PE, Vale, W. Development of Cushing’s syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 1992;130(6):3378–86. https://doi.org/10.1210/endo.130.6.1597149.CrossRefGoogle ScholarPubMed
Suppiah, S, Nassiri, F, Bi, WL, et al. Molecular and translational advances in meningiomas. Neuro Oncol 2019;21(Suppl_1):i417. https://doi.org/10.1093/neuonc/noy178.Google Scholar
Thomas, C, Soschinski, P, Zwaig, M, et al. The genetic landscape of choroid plexus tumors in children and adults. Neuro Oncol 2021;23(4):650–60. 10.1093/neuonc/noaa267.Google Scholar
Torp SH, Solheim O, Skjulsvik AJ. The WHO 2021 Classification of Central Nervous System tumours: a practical update on what neurosurgeons need to know-a minireview. Acta Neurochir (Wien). 2022 Sep;164(9):2453–2464. doi: 10.1007/s00701-022-05301-y.Google Scholar
Tsai, KY, MacPherson, D, Rubinson, DA, et al., ARF mutation accelerates pituitary tumor development in Rb+/– mice. PNAS 2002;99(26):16865–70. https://doi.org/10.1073/pnas.262499599.Google Scholar
Vierimaa, O, Georgitsi, M, Lehtonen, R, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006;312(5777):1228–30. https://doi.org/10.1126/science.1126100.Google Scholar
Vlotides, G, Eigler, T, Melmed, S. Pituitary tumor-transforming gene: physiology and implications for tumorigenesis. Endocr Rev 2007;28(2):165–86. https://doi.org/Google Scholar
Vooijs, M, van der Valk, M, te Riele, H, Berns, A. Flp-mediated tissue-specific inactivation of the retinoblastoma tumor suppressor gene in the mouse. Oncogene 1998;17(1):112. https://doi.org/10.1038/sj.onc.1202169.Google Scholar
Wang, D, Wong, H-K, Feng, Y-B, Zhang, Z-J. Liquiritigenin exhibits antitumour action in pituitary adenoma cells via Ras/ERKs and ROS-dependent mitochondrial signalling pathways. J Pharm Pharmacol 2014;66(3):408–17. https://doi.org/10.1111/jphp.12170.Google Scholar
Wolff, JE, Sajedi, M, Brant, R, Coppes, MJ, Egeler, RM. Choroid plexus tumours. Br J Cancer 2002;87(10):1086–91. https://doi.org/10.1038/sj.bjc.6600609.Google Scholar
Wu, J, Armstrong, TS, Gilbert, MR. Biology and management of ependymomas. Neuro Oncol 2016;18(7):902–13. https://doi.org/10.1093/neuonc/now016.CrossRefGoogle ScholarPubMed
Yin, Z, Williams-Simons, L, Parlow, AF, Asa, S, Kirschner, LS. Pituitary-specific knockout of the Carney complex gene Prkar1a leads to pituitary tumorigenesis. Mol Endocrinol 2008;22(2):380–7. https://doi.org/10.1210/me.2006-0428.Google Scholar
Youngblood, MW, Duran, D, Montejo, JD, et al. Correlations between genomic subgroup and clinical features in a cohort of more than 3000 meningiomas. J Neurosurg 2019;133(5):1345–54. https://doi.org/10.3171/2019.8.JNS191266.Google Scholar
Zang, KD, Singer, H. Chromosomal constitution of meningiomas. Nature 1967;216(5110):84–5. https://doi.org/10.1038/216084a0.Google Scholar
Zhang, H, Qi, L, Du, Y, et al. Patient-derived orthotopic xenograft (PDOX) mouse models of primary and recurrent meningioma. Cancers (Basel) 2020;12(6):E1478. https://doi.org/10.3390/cancers12061478.CrossRefGoogle ScholarPubMed
Zhao, Y, Xiao, Z, Chen, W, Yang, J, Li, T, Fan, B. Disulfiram sensitizes pituitary adenoma cells to temozolomide by regulating O6-methylguanine-DNA methyltransferase expression. Mol Med Rep 2015;12(2):2313–22. https://doi.org/10.3892/mmr.2015.3664.Google Scholar
Zhen, W, Qiu, D, Zhiyong, C, et al. MicroRNA-524-5p functions as a tumor suppressor in a human pituitary tumor-derived cell line. Horm Metab Res 2017;49(7):550–7. https://doi.org/10.1055/s-0043-106437.Google Scholar
Zindy, F, Nilsson, LM, Nguyen, L, et al. Hemangiosarcomas, medulloblastomas, and other tumors in Ink4c/p53-null mice. Cancer Res 2003;63(17):5420–7.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×