Published online by Cambridge University Press: 20 November 2018
Let   ${{A}_{n}}\,=\,\{{{a}_{0}}+{{a}_{1}}z+\,.\,.\,.\,+\,{{a}_{n-1}}{{z}^{n-1}}\,:\,{{a}_{j}}\,\in \,\{0,1\}\}$ , whose elements are called zero-one polynomials and correspond naturally to the
 ${{A}_{n}}\,=\,\{{{a}_{0}}+{{a}_{1}}z+\,.\,.\,.\,+\,{{a}_{n-1}}{{z}^{n-1}}\,:\,{{a}_{j}}\,\in \,\{0,1\}\}$ , whose elements are called zero-one polynomials and correspond naturally to the   ${{2}^{n}}$  subsets of
 ${{2}^{n}}$  subsets of   $\left[ n \right]\,:=\,\{0,\,1,\,.\,.\,.\,,\,n-1\}$ . We also let
 $\left[ n \right]\,:=\,\{0,\,1,\,.\,.\,.\,,\,n-1\}$ . We also let   ${{A}_{n,m\,}}\,=\,\{\alpha \left( z \right)\,\in \,{{A}_{n}}\,:\,\alpha \left( 1 \right)\,=\,m\}$ , whose elements correspond to the
 ${{A}_{n,m\,}}\,=\,\{\alpha \left( z \right)\,\in \,{{A}_{n}}\,:\,\alpha \left( 1 \right)\,=\,m\}$ , whose elements correspond to the   $\left( _{m}^{n} \right)$  subsets of
 $\left( _{m}^{n} \right)$  subsets of   $\left[ n \right]$  of size
 $\left[ n \right]$  of size   $m$ , and let
 $m$ , and let   ${{B}_{n}}\,=\,{{A}_{n+1}}\,\backslash \,{{A}_{n}}$ , whose elements are the zero-one polynomials of degree exactly
 ${{B}_{n}}\,=\,{{A}_{n+1}}\,\backslash \,{{A}_{n}}$ , whose elements are the zero-one polynomials of degree exactly   $n$ .
 $n$ .
Many researchers have studied norms of polynomials with restricted coefficients. Using   $\|\alpha {{\|}_{p}}$  to denote the usual
 $\|\alpha {{\|}_{p}}$  to denote the usual   ${{L}_{p}}$  norm of
 ${{L}_{p}}$  norm of   $\alpha$  on the unit circle, one easily sees that
 $\alpha$  on the unit circle, one easily sees that   $\alpha \left( z \right)\,=\,{{a}_{0}}+{{a}_{1}}z+.\,.\,.+{{a}_{N}}{{z}^{N}}\,\in \,\mathbb{R}\left[ z \right]$  satisfies
 $\alpha \left( z \right)\,=\,{{a}_{0}}+{{a}_{1}}z+.\,.\,.+{{a}_{N}}{{z}^{N}}\,\in \,\mathbb{R}\left[ z \right]$  satisfies   $\|\alpha \|_{2}^{2}\,=\,{{c}_{0}}$  and
 $\|\alpha \|_{2}^{2}\,=\,{{c}_{0}}$  and   $\|\alpha \|_{4}^{4}\,=\,c_{0}^{2}\,+\,2\left( c_{1}^{2}\,+\,.\,.\,.\,+\,c_{N}^{2} \right)$ , where
 $\|\alpha \|_{4}^{4}\,=\,c_{0}^{2}\,+\,2\left( c_{1}^{2}\,+\,.\,.\,.\,+\,c_{N}^{2} \right)$ , where   ${{c}_{k}}\,:=\,\sum _{j=0}^{N-k}\,{{a}_{j}}{{a}_{j+k}}\,\text{for}\,\text{0}\le \,\text{k}\,\le N$ .
 ${{c}_{k}}\,:=\,\sum _{j=0}^{N-k}\,{{a}_{j}}{{a}_{j+k}}\,\text{for}\,\text{0}\le \,\text{k}\,\le N$ .
If   $\alpha \left( z \right)\,\in \,{{A}_{n,m}}$ , say
 $\alpha \left( z \right)\,\in \,{{A}_{n,m}}$ , say   $\alpha \left( z \right)\,=\,{{z}^{{{\text{ }\!\!\beta\!\!\text{ }}_{1}}}}\,+\,.\,.\,.\,+\,{{z}^{{{\text{ }\!\!\beta\!\!\text{ }}_{m}}}}$  where
 $\alpha \left( z \right)\,=\,{{z}^{{{\text{ }\!\!\beta\!\!\text{ }}_{1}}}}\,+\,.\,.\,.\,+\,{{z}^{{{\text{ }\!\!\beta\!\!\text{ }}_{m}}}}$  where   ${{\beta }_{1}}\,<\,.\,.\,.\,<\,{{\beta }_{m}}$ , then
 ${{\beta }_{1}}\,<\,.\,.\,.\,<\,{{\beta }_{m}}$ , then   ${{c}_{k}}$  is the number of times
 ${{c}_{k}}$  is the number of times   $k$  appears as a difference
 $k$  appears as a difference   ${{\beta }_{i}}\,-\,{{\beta }_{j}}$ . The condition that
 ${{\beta }_{i}}\,-\,{{\beta }_{j}}$ . The condition that   $\alpha \,\in \,{{A}_{n,m}}$  satisfies
 $\alpha \,\in \,{{A}_{n,m}}$  satisfies   ${{c}_{k}}\,\in \,\{0,1\}$  for
 ${{c}_{k}}\,\in \,\{0,1\}$  for   $1\,\le \,k\,\le \,n\,-\,1$  is thus equivalent to the condition that
 $1\,\le \,k\,\le \,n\,-\,1$  is thus equivalent to the condition that   $\{{{\beta }_{1}},\,.\,.\,.\,,\,{{\beta }_{m}}\}$  is a Sidon set (meaning all differences of pairs of elements are distinct).
 $\{{{\beta }_{1}},\,.\,.\,.\,,\,{{\beta }_{m}}\}$  is a Sidon set (meaning all differences of pairs of elements are distinct).
In this paper, we find the average of   $\left\| \alpha\right\|_{4}^{4}$  over
 $\left\| \alpha\right\|_{4}^{4}$  over   $\alpha \,\in \,{{A}_{n}}$ ,
 $\alpha \,\in \,{{A}_{n}}$ ,   $\alpha \,\in \,{{B}_{n}}$  and
 $\alpha \,\in \,{{B}_{n}}$  and   $\alpha \,\in \,{{A}_{n,m}}$ . We further show that our expression for the average of
 $\alpha \,\in \,{{A}_{n,m}}$ . We further show that our expression for the average of   $\left\| \alpha\right\|_{4}^{4}$  over
 $\left\| \alpha\right\|_{4}^{4}$  over   ${{A}_{n,m}}$  yields a new proof of the known result: if
 ${{A}_{n,m}}$  yields a new proof of the known result: if   $m\,=\,o\left( {{n}^{1/4}} \right)$  and
 $m\,=\,o\left( {{n}^{1/4}} \right)$  and   $B\left( n,\,m \right)$  denotes the number of Sidon sets of size
 $B\left( n,\,m \right)$  denotes the number of Sidon sets of size   $m$  in
 $m$  in   $\left[ n \right]$ , then almost all subsets of
 $\left[ n \right]$ , then almost all subsets of   $\left[ n \right]$  of size
 $\left[ n \right]$  of size   $m$  are Sidon, in the sense that
 $m$  are Sidon, in the sense that   ${{\lim }_{n\to \infty }}\,B\left( n,\,m \right)/\left( _{m}^{n} \right)\,=\,1$ .
 ${{\lim }_{n\to \infty }}\,B\left( n,\,m \right)/\left( _{m}^{n} \right)\,=\,1$ .