Published online by Cambridge University Press: 20 November 2018
Let
  $$\zeta \left( s,x \right)=\sum\limits_{n=0}^{\infty }{\frac{1}{{{\left( n+x \right)}^{s}}}}\left( s>1,x>0 \right)$$
 $$\zeta \left( s,x \right)=\sum\limits_{n=0}^{\infty }{\frac{1}{{{\left( n+x \right)}^{s}}}}\left( s>1,x>0 \right)$$
be the Hurwitz zeta function and let
  $$Q\left( x \right)=Q\left( x;\alpha ,\beta ;a,b \right)=\frac{{{\left( \zeta \left( \alpha ,x \right) \right)}^{a}}}{{{\left( \zeta \left( \beta ,x \right) \right)}^{{{b}'}}}}$$
 $$Q\left( x \right)=Q\left( x;\alpha ,\beta ;a,b \right)=\frac{{{\left( \zeta \left( \alpha ,x \right) \right)}^{a}}}{{{\left( \zeta \left( \beta ,x \right) \right)}^{{{b}'}}}}$$
where   $\alpha ,\beta >1$  and
 $\alpha ,\beta >1$  and   $a,b>0$  are real numbers. We prove: (i) The function
 $a,b>0$  are real numbers. We prove: (i) The function   $Q$  is decreasing on
 $Q$  is decreasing on   $\left( 0,\infty\right)$  iff
 $\left( 0,\infty\right)$  iff   $\alpha a-\beta b\ge \max \left( a-b,0 \right)$ . (ii)
 $\alpha a-\beta b\ge \max \left( a-b,0 \right)$ . (ii)   $Q$  is increasing on
 $Q$  is increasing on   $\left( 0,\infty\right)$  iff
 $\left( 0,\infty\right)$  iff   $\alpha a-\beta b\le \min \left( a-b,0 \right)$ . An application of part (i) reveals that for all
 $\alpha a-\beta b\le \min \left( a-b,0 \right)$ . An application of part (i) reveals that for all   $x>0$  the function
 $x>0$  the function   $s\mapsto {{\left[ \left( s-1 \right)\zeta \left( s,x \right) \right]}^{1/\left( s-1 \right)}}$  is decreasing on
 $s\mapsto {{\left[ \left( s-1 \right)\zeta \left( s,x \right) \right]}^{1/\left( s-1 \right)}}$  is decreasing on   $\left( 1,\infty\right)$ . This settles a conjecture of Bastien and Rogalski.
 $\left( 1,\infty\right)$ . This settles a conjecture of Bastien and Rogalski.