Hostname: page-component-cb9f654ff-fg9bn Total loading time: 0 Render date: 2025-08-26T06:50:09.630Z Has data issue: false hasContentIssue false

Viability Kernels and Control Sets

Published online by Cambridge University Press:  15 August 2002

Dietmar Szolnoki*
Affiliation:
Universität Augsburg, Institut für Mathematik, Universitätsstraße 14, 86135 Augsburg, Germany; szolnoki@math.uni-augsburg.de.
Get access

Abstract

This paper analyzes the relation of viability kernels and controlsets of control affine systems. A viability kernel describesthe largest closed viability domain contained in some closed subsetQ of the state space. On theother hand, control sets are maximal regions of the state spacewhere approximate controllability holds. It turns out thatthe viability kernel of Q can be represented by the union ofdomains of attraction of chain control sets, defined relativeto the given set Q.In particular, with thisresult control sets and their domains of attractioncan be computed using techniques for thecomputation of attractors and viability kernels.

Information

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

J.-P. AUBIN, Viability Theory. Birkhäuser (1991).
Infinite, F. COLONIUS AND W. KLIEMANN time optimal control and periodicity. Appl. Math. Optim. 20 (1989) 113-130.
height 2pt depth -1.6pt width 23pt, Some, aspects of control systems as dynamical systems. J. Dynam. Differential Equations 5 (1993) 469-494.
height 2pt depth -1.6pt width 23pt, The Dynamics of Control. Birkhäuser (2000) to appear.
HOHMANN, M. DELLNITZ AND A., A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75 (1997) 293-317.
G. HÄCKL, Reachable Sets, Control Sets and Their Computation. Dissertation, Universität Augsburg, ``Augsburger Mathematische Schriften Band 7" (1996).
W. KLIEMANN, Qualitative Theorie Nichtlinearer Stochastischer Systeme. Dissertation, Universität Bremen (1980).
H. NIJMEIJER AND A.J. VAN DER SCHAFT, Nonlinear Dynamical Control Systems. Springer-Verlag (1990).
Approximation, P. SAINT-PIERRE of the viability kernel. Appl. Math. Optim. 29 (1994) 187-209.
height 2pt depth -1.6pt width 23pt, Set-valued numerical analysis for optimal control and differential games (1998) to appear.
D. SZOLNOKI, Berechnung von Viabilitätskernen. Diplomarbeit, Institut für Mathematik, Universität Augsburg, Augsburg (1997).
UPPAL, A., On, W.H. RAY AND A.B. POORE the dynamic behavior of continuous stirred tank reactors. Chem. Engrg. Sci. 19 (1974) 967-985. CrossRef