No CrossRef data available.
Published online by Cambridge University Press: 26 February 2009
Good knowledge of the far-infrared and millimeter emission from dust in the interstellar medium is important to get reliable estimates of the dust mass, to trace and understand the evolution of pre-stellar structures, and to accurately subtract the foreground emission in the cosmological background anisotropy measurements. Up to now the modeled dust emission profile in FIR and millimeter wavelength range is deduced from the wings of some mid-infrared fundamental lattice-resonances inside the silicate material, which is known to be the dominant constituent of this dust component. However recent astronomical observations have shown that the dust emission profile could be significantly more complicated than expected. In addition, spectroscopic studies in the laboratory on analogues of amorphous interstellar grains have revealed that additional processes can occur in that spectral range, which are strongly temperature-dependent. We propose a new model for far-infrared and millimeter dust emission which takes into account results from the solid state physics, used to interpret these laboratory data. This model explicitly incorporates the effect of the disorder in the internal structure of the dust grain. We show that this model can give a satisfactory interpretation for the astronomical observations. It opens new perspectives to derive some new dust characteristics from the shape of the dust emission spectrum.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.