Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-10-31T23:19:57.019Z Has data issue: false hasContentIssue false

A model for far-infrared and millimeter interstellar dust emission

Published online by Cambridge University Press:  26 February 2009

C. Meny
Affiliation:
Centre d'Étude Spatiale des Rayonnements, CNRS, 9 Avenue du Colonel Roche, 31028 Toulouse, France
N. Boudet
Affiliation:
Centre d'Étude Spatiale des Rayonnements, CNRS, 9 Avenue du Colonel Roche, 31028 Toulouse, France
J.-Ph. Bernard
Affiliation:
Centre d'Étude Spatiale des Rayonnements, CNRS, 9 Avenue du Colonel Roche, 31028 Toulouse, France
D. Paradis
Affiliation:
Centre d'Étude Spatiale des Rayonnements, CNRS, 9 Avenue du Colonel Roche, 31028 Toulouse, France
V. Gromov
Affiliation:
Space Research Institute, RAS, 84/32 Profsoyuznaya, 117810 Moscow, Russia
Get access

Abstract

Good knowledge of the far-infrared and millimeter emission from dust in the interstellar medium is important to get reliable estimates of the dust mass, to trace and understand the evolution of pre-stellar structures, and to accurately subtract the foreground emission in the cosmological background anisotropy measurements. Up to now the modeled dust emission profile in FIR and millimeter wavelength range is deduced from the wings of some mid-infrared fundamental lattice-resonances inside the silicate material, which is known to be the dominant constituent of this dust component. However recent astronomical observations have shown that the dust emission profile could be significantly more complicated than expected. In addition, spectroscopic studies in the laboratory on analogues of amorphous interstellar grains have revealed that additional processes can occur in that spectral range, which are strongly temperature-dependent. We propose a new model for far-infrared and millimeter dust emission which takes into account results from the solid state physics, used to interpret these laboratory data. This model explicitly incorporates the effect of the disorder in the internal structure of the dust grain. We show that this model can give a satisfactory interpretation for the astronomical observations. It opens new perspectives to derive some new dust characteristics from the shape of the dust emission spectrum.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agladze, N.I., et al., 1996, ApJ, 462, 1026 CrossRef
Agladze, N.I., & Sievers, A.J., 1998, Phys. Rev. Lett., 80, 4209 CrossRef
Anderson, P.W., Halperin, B.I., & Varma, C.M., 1972, Phil. Mag., 25, 1 CrossRef
Bernard, J.-P. et al., 1999, A&A, 347, 640
Boudet, N., Mutschke, H., Nayral, C., et al., 2005, ApJ, 633, 272 CrossRef
Chandler, C.J., et al., 1995, ApJ, 455L, 93
Desert, F.-X., Boulanger, F., & Puget, J.L., 1990, ApJ, 237, 215
Draine, B.T., & Anderson, N., 1985, ApJ, 292, 494 CrossRef
Draine, B.T., & Lee, H.M., 1984, ApJ, 285, 89 CrossRef
Draine, B.T., & Li, A., 2001, ApJ, 551, 807 CrossRef
Dupac, X., et al., 2001, ApJ, 553, 604 CrossRef
Dupac, X., et al., 2002, A&A, 392, 691
Dupac, X., del Burgo, C., et al., 2003, MNRAS, 344, 105 CrossRef
Dwek, E., et al., 1997, ApJ, 475, 565 CrossRef
Galliano, F., Madden, S.C., Jones, A.P., et al., 2003, A&A, 407, 159
Galliano, F., Madden, S.C., Jones, A.P., et al., 2005, A&A, 434, 867
Gordon, M.A., 1988, ApJ, 331, 509 CrossRef
Gordon, M.A., 1990, ApJ, 352, 636 CrossRef
Finkbeiner, D.P., Davis, M., & Schlegel, D.J., 1999, ApJ, 524, 867 CrossRef
Fitzgerald, S.A., Sievers, A.J., Campbell, J.A., 2001a, J. Phys. Condens. Matter, 13, 2177 CrossRef
Henning, T., & Mutschke, H., 1997, ApJ, 327, 743
Hubbard, B.E., et al., 2003, Phys. Rev. B, 67, 144201 CrossRef
Jäckle, J., 1972, Z. Physik A, 257, 212 CrossRef
Koike, C., Hasegawa, H., & Manabe, A., 1980, Ap&SS, 67, 495
Li, A., & Greenberg, J.M., 1997, A&A, 323, 566
Lamarre, J.-M., 1994, Infr. Phys. & Techn., 35, 277 CrossRef
Mathis, J.S., Rumpl, W., & Nordsieck, K.H., 1977, ApJ, 217, 425 CrossRef
Mennella, V., et al., 1998, ApJ, 496, 1058 CrossRef
Meny, C., Gromov, V., Boudet, N., et al., 2006, A&A, accepted
Mon, K.K., Chabal, Y.J., & Sievers, A.J., 1975, Phys. Rev. Lett., 35, 1352 CrossRef
Oldham, P., et al., 1994, ApJ, 284, 5590
Pajot, F., 2006, A&A, 447, 769
Phillips, W., 1972, J. Low Temp. Phys., 11, 757 CrossRef
Phillips, W., 1987, Rep. Prog. Phys., 50, 1657 CrossRef
Reach, W.T., Dwek, E., Fixsen, D.J., et al., 1995, ApJ, 451, 188 CrossRef
Ristorcelli, I., et al., 1998, ApJ, 496, 267 CrossRef
Schlömann, E., 1964, Phys. Rev. A, 135, 413 CrossRef
Schwartz, P., 1982, ApJ, 252, 589 CrossRef
Serra, G. et al., 2002, Adv. Space Res. 30, 1297
Strom, U., & Taylor, P.C., 1977, Phys. Rev., 16, 5512 CrossRef
Walker, C., et al., 1990, ApJ, 349, 515 CrossRef
Weiland, J.L., et al., 1986, ApJ, 306, L101 CrossRef
Woody, D., et al., 1989, ApJ, 337, 41 CrossRef
Wright, E., et al., 1992, ApJ, 396, L13 CrossRef