Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-10-31T23:40:48.138Z Has data issue: false hasContentIssue false

The variable Universe Through the Eyes of Gaia

Published online by Cambridge University Press:  15 February 2011

L. Eyer
Affiliation:
Observatoire de Genève, Université de Genève, 1290 Sauverny, Switzerland
M. Suveges
Affiliation:
ISDC, Observatoire de Genève, Université de Genève, 1290 Sauverny, Switzerland
P. Dubath
Affiliation:
ISDC, Observatoire de Genève, Université de Genève, 1290 Sauverny, Switzerland
N. Mowlavi
Affiliation:
ISDC, Observatoire de Genève, Université de Genève, 1290 Sauverny, Switzerland
C. Greco
Affiliation:
Observatoire de Genève, Université de Genève, 1290 Sauverny, Switzerland
M. Varadi
Affiliation:
Observatoire de Genève, Université de Genève, 1290 Sauverny, Switzerland
D. W. Evans
Affiliation:
Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK
P. Bartholdi
Affiliation:
Observatoire de Genève, Université de Genève, 1290 Sauverny, Switzerland
Get access

Abstract

The ESA Gaia mission will provide a multi-epoch database for a billion of objects,including variable objects that comprise stars, active galactic nuclei and asteroids. Wehighlight a few of Gaia’s properties that will benefit the study of variable objects, andillustrate with two examples the work being done in the preparation of the data processingand object characterization. The first example relates to the analysis of the nearlysimultaneous multi-band data of Gaia with the Principal Component Analysis techniques, andthe second example concerns the classification of Gaia time series into variability types.The results of the ground-based processing of Gaia’s variable objects data will be madeavailable to the scientific community through the intermediate and final ESA releasesthroughout the mission.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Bartholdi, P., 2005, Gaia document: VSWG-PB-001
Breiman, L., 2001, Machine Learning, 45, 5 CrossRef
Eyer, L., & Mignard, F., 2005, MNRAS, 361, 1136 CrossRef
Eyer, L., & Mowlavi, N., 2008, J. Phys. Conf. Ser., 118, 2010 CrossRef
Hastie, T., Tibshirani, R., & Friedman, J., 2009, “The Elements of Statistical Learning”, Springer, ISBN 978-0-387-84857-0
Mignard, F., 2010, June 23–25 Science Alert Workshop presentation (Cambridge, UK)
Sesar, B., et al., 2007, AJ, 134, 2236 CrossRef
Spano, M., Mowlavi, N., Eyer, L., & Burki, G., 2009, AIP Conf. Proc., 1170, 324 CrossRef
Svetnik V., et al., 2004, ed. Roli F., Kittler J., & Windeatt T., Lecture notes in computer science (Springer), 3077, 334