Hostname: page-component-7dd5485656-2pp2p Total loading time: 0 Render date: 2025-10-28T07:46:48.782Z Has data issue: false hasContentIssue false

Numerical study on propagation of detonation waves in a non-uniform mixture with transverse temperature discontinuities

Published online by Cambridge University Press:  28 October 2025

Tianbao Ma
Affiliation:
State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China
Xi Liu
Affiliation:
State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China
Jian Li*
Affiliation:
State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China
Jianguo Ning
Affiliation:
State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China
*
Corresponding author: Jian Li, jian_li@bit.edu.cn

Abstract

The propagation of detonations in a non-uniform mixture exhibits notable distinctions from that in a uniform mixture. This study first delves into the analytical analysis of the one-dimensional shock transmission problem and the two-dimensional shock propagation in a mixture with temperature non-uniformity. Additionally, the research extends to the numerical simulation of the propagation of shocks and detonations, building upon the insights garnered from the analytical analysis. The numerical results indicate that introducing a temperature interface in a non-uniform gas creates a discrete flow field and wavefront, resulting in oblique shocks that connect hot and cold layers. A competitive mechanism between the transverse waves and non-uniformity is responsible for the detonation propagation. The temperature amplitude tends to inhibit the propagation of transverse waves. In contrast, the wavelengths primarily affect the spacing and strength of these transverse waves, especially during the early stages of propagation. In a Zel’Dovich–von Neumann–Döring detonation, the non-uniformities distort the detonation front, creating transverse wave spacings comparable to the wavelength and reducing the front velocity. However, the detonation can recover its Chapman–Jouguet velocity and approach a steady states as intrinsic instabilities come into play. In the steady state, the cell sizes are found to be determined by the temperature amplitude. When the temperature amplitude is sufficiently high, the detonation cells effectively disappear.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Boeck, L.R., Berger, F.M., Hasslberger, J. & Sattelmayer, T. 2016 Detonation propagation in hydrogen–air mixtures with transverse concentration gradients. Shock Waves 26 (2), 181192.10.1007/s00193-015-0598-8CrossRefGoogle Scholar
Boeck, L.R., Hasslberger, J. & Sattelmayer, T. 2014 Flame acceleration in hydrogen/air mixtures with concentration gradients. Combust. Sci. Technol. 186 (10–11), 16501661.10.1080/00102202.2014.935619CrossRefGoogle Scholar
Boulal, S., Vidal, P. & Zitoun, R. 2016 Experimental investigation of detonation quenching in non-uniform compositions. Combust. Flame 172, 222233.10.1016/j.combustflame.2016.07.022CrossRefGoogle Scholar
Braun, E.M., Lu, F.K., Wilson, D.R. & Camberos, J.A. 2013 Airbreathing rotating detonation wave engine cycle analysis. Aerosp. Sci. Technol. 27 (1), 201208.10.1016/j.ast.2012.08.010CrossRefGoogle Scholar
Bykovskii, F.A., Zhdan, S.A. & Vedernikov, E.F. 2006 Continuous spin detonation in annular combustors. J. Propul. Power 22, 12041216.10.2514/1.17656CrossRefGoogle Scholar
Catherasoo, C.J. & Sturtevant, B. 1982 Shock dynamics in non-uniform media. J. Fluid Mech. 127, 539561.10.1017/S0022112083002876CrossRefGoogle Scholar
Chen, Q., Huang, J., Lei, G., Wang, T., Chen, J. & Han, W. 2023 Effects of confinement on detonation in H2–O2 mixture with transverse concentration gradient. Intl J. Hydrogen Energy 48 (48), 1848618497.10.1016/j.ijhydene.2023.01.216CrossRefGoogle Scholar
Cuadra, A., Huete, C. & Vera, M. 2020 Effect of equivalence ratio fluctuations on planar detonation discontinuities. J. Fluid Mech. 903, A30.10.1017/jfm.2020.651CrossRefGoogle Scholar
Deiterding, R. 2003 Parallel adaptive simulation of multi-dimensional detonation structures. PhD thesis, Brandenburgische Technische Universität Cottbus.Google Scholar
Deiterding, R. 2009 A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains. Comput. Struct. 87 (11), 769783.10.1016/j.compstruc.2008.11.007CrossRefGoogle Scholar
Deiterding, R. 2011 a Block-structured adaptive mesh refinement – theory, implementation and application. ESAIM: Proc. 34, 97150.10.1051/proc/201134002CrossRefGoogle Scholar
Deiterding, R. 2011 b High-resolution numerical simulation and analysis of Mach reflection structures in detonation waves in low-pressure H2–O2−Ar mixtures: a summary of results obtained with the adaptive mesh refinement framework AMROC. J. Combust. 2011, 298305.10.1155/2011/738969CrossRefGoogle Scholar
Donato, M., Donato, L. & Lee, J.H.S. 1981 Transmission of detonations through composition gradients. In Proceedings of the First Specialists Meeting (International) of the Combustion Institute. Bordeaux, France.Google Scholar
Ettner, F., Vollmer, K.G. & Sattelmayer, T. 2013 Mach reflection in detonations propagating through a gas with a concentration gradient. Shock Waves 23 (3), 201206.10.1007/s00193-012-0385-8CrossRefGoogle Scholar
Frolov, S.M., Dubrovskii, A.V. & Ivanov, V.S. 2013 Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer. Russian J. Phys. Chem. B 7 (1), 3543.10.1134/S1990793113010119CrossRefGoogle Scholar
Han, W., Wang, C. & Law, C.K. 2019 Role of transversal concentration gradient in detonation propagation. J. Fluid Mech. 865, 602649.10.1017/jfm.2019.37CrossRefGoogle Scholar
Henshaw, W.D., Smyth, N.F. & Schwendeman, D.W. 1986 Numerical shock propagation using geometrical shock dynamics. J. Fluid Mech. 171, 519545.10.1017/S0022112086001568CrossRefGoogle Scholar
Honhar, P., Kaplan, C.R., Houim, R.W. & Oran, E.S. 2020 Role of reactivity gradients in the survival, decay and reignition of methane–air detonations in large channels. Combust. Flame 222, 152169.10.1016/j.combustflame.2020.08.034CrossRefGoogle Scholar
Ishii, K. & Kojima, M. 2007 Behavior of detonation propagation in mixtures with concentration gradients. Shock Waves 17 (1–2), 95102.10.1007/s00193-007-0093-yCrossRefGoogle Scholar
Kaps, P. & Rentrop, P. 1979 Generalized Runge–Kutta methods of order four with stepsize control for stiff ordinary differential equations. Numer. Math. 33 (1), 5568.10.1007/BF01396495CrossRefGoogle Scholar
Kessler, D.A., Gamezo, V.N. & Oran, E.S. 2012 Gas-phase detonation propagation in mixture composition gradients. Phil. Trans. R. Soc. A 370 (1960), 567596.10.1098/rsta.2011.0342CrossRefGoogle ScholarPubMed
Kuznetsov, M.S., Dorofeev, S.B., Efimenko, A.A., Alekseev, V.I. & Breitung, W. 1997 Experimental and numerical studies on transmission of gaseous detonation to a less sensitive mixture. Shock Waves 7 (5), 297304.10.1007/s001930050084CrossRefGoogle Scholar
Lee, J.H.S. 2008 The Detonation Phenomenon. Cambridge University Press.10.1017/CBO9780511754708CrossRefGoogle Scholar
Li, J., Mi, X. & Higgins, A.J. 2015 Effect of spatial heterogeneity on near-limit propagation of a pressure-dependent detonation. Proc. Combust. Inst. 35 (2), 20252032.10.1016/j.proci.2014.06.039CrossRefGoogle Scholar
Ma, W.J., Wang, C. & Han, W.H. 2020 Effect of concentration inhomogeneity on the pulsating instability of hydrogen–oxygen detonations. Shock Waves 30 (7–8), 703711.10.1007/s00193-020-00976-7CrossRefGoogle Scholar
Mi, X., Higgins, A.J., Ng, H.D., Kiyanda, C.B. & Nikiforakis, N. 2017 a Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium. Phys. Rev. Fluids 2, 053201.10.1103/PhysRevFluids.2.053201CrossRefGoogle Scholar
Mi, X., Timofeev, E.V. & Higgins, A.J. 2017 b Effect of spatial discretization of energy on detonation wave propagation. J. Fluid Mech. 817, 306338.10.1017/jfm.2017.81CrossRefGoogle Scholar
Ng, H.D., Radulescu, M.I., Higgins, A.J., Nikiforakis, N. & Lee, J.H. 2005 Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chain-branching kinetics. Combust. Theor. Model. 9 (3), 385401.10.1080/13647830500307758CrossRefGoogle Scholar
Noumir, Y., Le Guilcher, A., Lardjane, N., Monneau, R. & Sarrazin, A. 2015 A fast-marching like algorithm for geometrical shock dynamics. J. Comput. Phys. 284, 206229.10.1016/j.jcp.2014.12.019CrossRefGoogle Scholar
Prakash, S. & Raman, V. 2021 The effects of mixture preburning on detonation wave propagation. Proc. Combust. Inst. 38, 37493758.10.1016/j.proci.2020.06.005CrossRefGoogle Scholar
Radulescu, M.I., Sharpe, G.J., Law, C.K. & Lee, J.H.S. 2007 The hydrodynamic structure of unstable cellular detonations. J. Fluid Mech. 580, 3181.10.1017/S0022112007005046CrossRefGoogle Scholar
Ridoux, J., Lardjane, N., Monasse, L. & Coulouvrat, F. 2018 Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation. Shock Waves 28, 401416.10.1007/s00193-017-0748-2CrossRefGoogle Scholar
Sato, S., Matsuo, A., Endo, T. & Kasahara, J. 2006 Numerical studies on specific impulse of partially filled pulse detonation rocket engines. J. Propul. Power 22 (1), 6470.10.2514/1.9514CrossRefGoogle Scholar
Schwendeman, D.W. 1986 Numerical shock propagation in non-uniform media. J. Fluid Mech. 188, 383410.10.1017/S0022112088000771CrossRefGoogle Scholar
Short, M. & Sharpe, G.J. 2003 Pulsating instability of detonations with a two-step chain-branching reaction model: theory and numerics. Combust. Theor. Model. 7 (2), 401416.10.1088/1364-7830/7/2/311CrossRefGoogle Scholar
Strehlow, R.A. 1964 Reactive gas mach stems. Phys. Fluids 7 (6), 908910.10.1063/1.1711305CrossRefGoogle Scholar
Tang-Yuk, K.C., Mi, X.C., Lee, J.H.S. & Ng, H.D. 2018 Transmission of a detonation across a density interface. Shock Waves 28 (5), 967979.10.1007/s00193-018-0827-zCrossRefGoogle Scholar
Thomas, G.O., Sutton, P. & Edwards, D.H. 1991 The behavior of detonation waves at concentration gradients. Combust. Flame 84 (3–4), 312322.10.1016/0010-2180(91)90008-YCrossRefGoogle Scholar
Wang, C., Wu, Y., Huang, J., Han, W. & Song, Q. 2020 Effect of transversal concentration gradient on H2–O2 cellular detonation. Chin. Phys. B 29 (6), 115124.Google Scholar
Wang, Y., Huang, C., Deiterding, R., Chen, H. & Chen, Z. 2023 Numerical studies on detonation propagation in inhomogeneous mixtures with periodic reactant concentration gradient. J. Fluid Mech. 955, A23.10.1017/jfm.2022.1074CrossRefGoogle Scholar
Whitham, G.B. 1957 A new approach to problems of shock dynamics Part I Two-dimensional problems. J. Fluid Mech. 2 (2), 145171.10.1017/S002211205700004XCrossRefGoogle Scholar
Whitham, G.B. 1959 A new approach to problems of shock dynamics Part 2. Three-dimensional problems. J. Fluid Mech. 5 (3), 369386.10.1017/S002211205900026XCrossRefGoogle Scholar
Zhou, Y., Zhang, X., Zhong, L., Deiterding, R. & Wei, H. 2022 Effects of fluctuations in concentration on detonation propagation. Phys. Fluids 34 (7), 076101.10.1063/5.0096965CrossRefGoogle Scholar