Published online by Cambridge University Press: 08 February 2010
Gravitational available potential energy is a central concept in an energy analysis of flows in which buoyancy effects are dynamically important. These include, but are not limited to, most geophysical flows with persistently stable density stratification. The volume-integrated available potential energy ap is defined as the difference between the gravitational potential energy of the system and the potential energy of a reference state with the lowest potential energy that can be reached by adiabatic material rearrangement;
ap determines how much energy is available for conservative dynamical exchange with kinetic energy
k. In this paper we introduce new techniques for computing the local available potential energy density Eap in numerical simulations that allow for a more accurate and complete analysis of the available potential energy and its dynamical balances as part of the complete energy cycle of a flow. In particular, the definition of Eap and an associated gravitation disturbance field
permit us to make a spectral decomposition of its dynamical balance and examine the cross-scale energy flux. Several examples illustrate the spatial structure of Eap and its evolutionary influences. The greatest attention is given to an analysis of a turbulent-equilibrium simulation Eady-like vertical-shear flow with rotation and stable stratification. In this regime Eap exhibits a vigorous forward energy cascade from the mesoscale through the submesoscale range – first in a scale range dominated by frontogenesis and positive buoyancy-flux conversion from
ap to
k and then, after strong frontal instability and frontogenetic arrest, in a coupled kinetic-potential energy inertial-cascade range with negative buoyancy-flux conversion – en route to fine-scale dissipation of both energy components.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.