Published online by Cambridge University Press: 13 March 2009
Strong electrostatic double layers were produced with a triple plasma configuration in the large plasma chamber (5 m long, 2·5 m diameter) at IPM in Freiburg, Federal Republic of Germany. Owing to relatively low densities (1011 1012m−3), Debye lengths of a few centimetres and layer thicknesses of the order of a metre were obtained. Layers both with and without magnetic fields were studied. Analysis of particle spectra prove that wave-particle interactions play a minor role in maintaining the strong electric field. The three-dimensional potential distribution is measured and is qualitatively discussed in terms of particle budget. For cases with a magnetic field it tends to agree with observations above the aurora. Comparisons are made with double-layer theory and computer experiments, and general agreement is found as far as the available results allow.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.