Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-10-31T23:29:33.129Z Has data issue: false hasContentIssue false

FACTORIZATION OF OPERATORS THROUGH SUBSPACES OF $L^{1}$-SPACES

Published online by Cambridge University Press:  08 November 2016

J. M. CALABUIG
Affiliation:
Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain email jmcalabu@mat.upv.es
J. RODRÍGUEZ*
Affiliation:
Departamento de Matemática Aplicada, Facultad de Informática, Universidad de Murcia, 30100 Espinardo (Murcia), Spain email joserr@um.es
E. A. SÁNCHEZ-PÉREZ
Affiliation:
Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain email easancpe@mat.upv.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We analyze domination properties and factorization of operators in Banach spaces through subspaces of $L^{1}$-spaces. Using vector measure integration and extending classical arguments based on scalar integral bounds, we provide characterizations of operators factoring through subspaces of $L^{1}$-spaces of finite measures. Some special cases involving positivity and compactness of the operators are considered.

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

Footnotes

Research supported by MINECO/FEDER under projects MTM2014-53009-P (J. M. Calabuig), MTM2014-54182-P (J. Rodríguez) and MTM2012-36740-C02-02 (E. A. Sánchez-Pérez).

References

Avilés, A., Cabello Sánchez, F., Castillo, J. M. F., González, M. and Moreno, Y., ‘On separably injective Banach spaces’, Adv. Math. 234 (2013), 192216.CrossRefGoogle Scholar
Bartle, R. G., Dunford, N. and Schwartz, J., ‘Weak compactness and vector measures’, Canad. J. Math. 7 (1955), 289305.CrossRefGoogle Scholar
Calabuig, J. M., Lajara, S., Rodríguez, J. and Sánchez-Pérez, E. A., ‘Compactness in L 1 of a vector measure’, Studia Math. 225(3) (2014), 259282.CrossRefGoogle Scholar
Defant, A., ‘Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces’, Positivity 5(2) (2001), 153175.CrossRefGoogle Scholar
Defant, A. and Floret, K., Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, 176 (North-Holland, Amsterdam, 1993).Google Scholar
Defant, A. and Sánchez Pérez, E. A., ‘Maurey–Rosenthal factorization of positive operators and convexity’, J. Math. Anal. Appl. 297(2) (2004), 771790; special issue dedicated to John Horváth.CrossRefGoogle Scholar
Defant, A. and Sánchez Pérez, E. A., ‘Domination of operators on function spaces’, Math. Proc. Cambridge Philos. Soc. 146(1) (2009), 5766.CrossRefGoogle Scholar
Diestel, J., Jarchow, H. and Tonge, A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43 (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
Diestel, J. and Uhl, J. J. Jr., Vector Measures (American Mathematical Society, Providence, RI, 1977), with a foreword by B. J. Pettis.CrossRefGoogle Scholar
Fabian, M., Habala, P., Hájek, P., Montesinos, V. and Zizler, V., Banach Space Theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (Springer, New York, 2011).CrossRefGoogle Scholar
Fernández, A., Mayoral, F., Naranjo, F., Sáez, C. and Sánchez-Pérez, E. A., ‘Vector measure Maurey-Rosenthal-type factorizations and l-sums of L 1 -spaces’, J. Funct. Anal. 220(2) (2005), 460485.CrossRefGoogle Scholar
García-Cuerva, J. and Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, 116 (North-Holland, Amsterdam, 1985).Google Scholar
Juan, M. A. and Sánchez Pérez, E. A., ‘Maurey–Rosenthal domination for abstract Banach lattices’, J. Inequal. Appl. (2013), 2013:213, 12.CrossRefGoogle Scholar
Lacey, H. E., The Isometric Theory of Classical Banach Spaces, Grundlehren der mathematischen Wissenschaften, 208 (Springer, New York, 1974).CrossRefGoogle Scholar
Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 97 (Springer, Berlin, 1979).CrossRefGoogle Scholar
Mastyło, M. and Sánchez-Pérez, E. A., ‘Factorization of operators through Orlicz spaces’, Bull. Malays. Math. Sci. Soc. doi:10.1007/s40840-015-0158-5, to appear.CrossRefGoogle Scholar
Okada, S., Ricker, W. J. and Sánchez Pérez, E. A., Optimal Domain and Integral Extension of Operators, Operator Theory: Advances and Applications, 180 (Birkhäuser, Basel, 2008).CrossRefGoogle Scholar
Pisier, G., Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Mathematics, 60 (American Mathematical Society, Providence, RI, 1986).CrossRefGoogle Scholar
Rosenthal, H. P., ‘On subspaces of L p ’, Ann. of Math. (2) 97 (1973), 344373.CrossRefGoogle Scholar
Rosenthal, H. P., ‘A characterization of Banach spaces containing l 1 ’, Proc. Natl Acad. Sci. USA 71 (1974), 24112413.CrossRefGoogle Scholar
Rueda, P. and Sánchez-Pérez, E. A., ‘Compactness in spaces of spaces of p-integrable functions with respect to a vector measure’, Topol. Methods Nonlinear Anal. 45(2) (2015), 641653.CrossRefGoogle Scholar
Zippin, M., Extension of Bounded Linear Operators, Handbook of the Geometry of Banach Spaces, 2 (North-Holland, Amsterdam, 2003), 17031741.Google Scholar